Применение электротехнологий при метановом сбраживании отходов

С.В. Петров, И.В. Решетникова, В.С. Вохмин

ООО Энергоинжиниринг, г. Набережные Челны, ФГБОУ ВПО Ижевская ГСХА, г. Ижевск

Одним из основных вопросов, стоящих на пути прогресса в современном мире, является вопрос о развитии энергетики, базирующейся на доступе к энергетическим ресурсам.

Задача обеспечения постоянно растущих потребностей мировой и национальных экономик в энергии обусловливает необходимость развития возобновляемой энергетики и, в частности, биоэнергетики. Это также диктуется решением глобальных проблем, связанных с ограниченностью запасов ископаемых видов топлива и обеспечением экологической безопасности.

Биоэнергетика несет в себе новые технологии, которые потребуют для массового внедрения в энергетический баланс новых видов топлив, серьезной политической и экономической поддержки со стороны государства. Биомасса, аккумулирующая в себе солнечную энергию в форме углеводородов растительного происхождения, служит исходным сырьем для выработки биотоплива в твердом, жидком и газообразном виде в зависимости от технологии переработки[1].

В нашей стране недостаточно отработанных промышленных технологий, позволяющих масштабно решать проблему утилизации отходов АПК.

Проблема утилизации отходов имеет важное экологическое, экономическое и энергосберегающее значение. Наиболее перспективным вариантом переработки отходов производства в ценный удобрительный материал является анаэробное сбраживание, которое сопровождается получением биогаза.

Исходя из вышеизложенного была поставлена цель — разработать технологию, позволяющую интенсифицировать процесс анаэробной ферментации отходов, с разработкой оптимальной конструкции биореактора с применением электротехнологий.

Была разработана экспериментальная биогазовая установка метанового сбраживания непрерывного действия с различными видами нагрева (контактный, индукционный, СВЧ-нагрев), на которой реализован стадийный подвод энергии разных видов и экспериментально установлены рациональные энергетические параметры.

На рис. 1 показана кинетика выделения биогаза в зависимости от температуры и времени сбраживания при контактном нагреве свиного (1) и коровьего (2) навоза, а также контактный нагрев в трех режимах сбраживания.

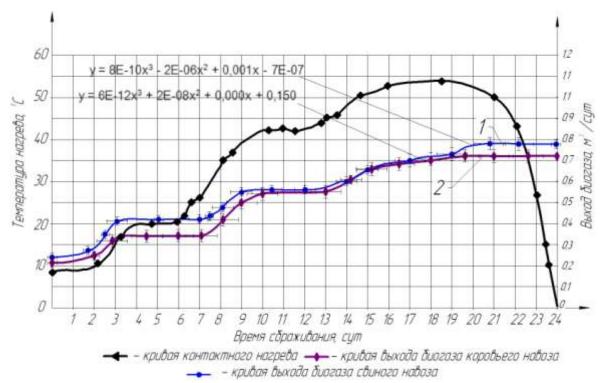


Рис. 1. Кинетика выделения биогаза в зависимости от температуры и времени сбраживания при контактном нагреве свиного (1) и коровьего (2) навоза

На рис. 2. приведены сравнительные характеристики выделения биогаза в зависимости от температуры и времени сбраживания свиного навоза при контактном и СВЧ нагреве.

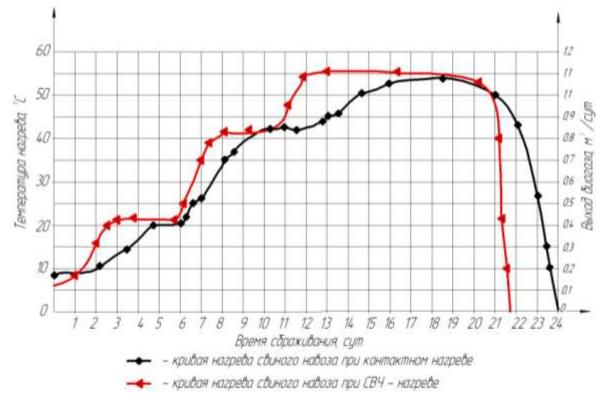


Рис. 2. Кинетика выделения биогаза в зависимости от температуры и времени сбраживания свиного навоза при контактном и СВЧ нагреве

Рассмотрено влияние индукционного нагрева на процесс нагрева навоза и выход биогаза с двумя наиболее оптимальными типами форм метантенка.

На рис. 3 показана кинетика выделения биогаза в зависимости от температуры и времени сбраживания с разными типами реактора.

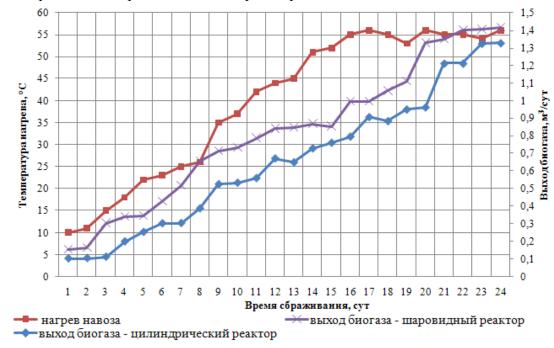


Рис. 3 Кинетика выделения биогаза в зависимости от температуры и времени сбраживания с разными типами реактора

Анализируя кривые рис. З получили, что при одних и тех же температурах нагрева процесс образования биогаза более эффективнее в ректоре сферичекой формы, а также полученные данные и графики на рисунках 1 и 2, выявили основные подходы к методам интенсификации процесса нагрева. Интенсификация за счет равномерного объемного разогрева метантенка до 55°С и объединения трех стадий сбраживания в единый цикл позволит потери тепла высокотемпературной зоны использовать для нагрева субстрата предыдущих стадий, что сократит время нагрева навоза при экономии энергии на разогрев. За критерии оптимизации принимаем максимальный выход биогаза и минимизацию затрат энергии.

Схема физической модели процесса непрерывного метанового сбраживания, представленная на рис. 4 разработана так, что высокотемпературная (термофильная) зона находится в центральной части метантенка, при этом температура центральной зоны разогревает среднюю (мезофильную) и крайнюю (психрофильную) зоны за счет конструктивных элементов реактора, а именно сужение зоны выгрузки переработанного навоза, приводит к интенсивным теплофизическим процессам передачи тепла вновь поступающему сырью. Также разогрев биомассы осуществляется контактным нагревом через перегородки, разделяющие эти зоны, и диффузии субстрата.

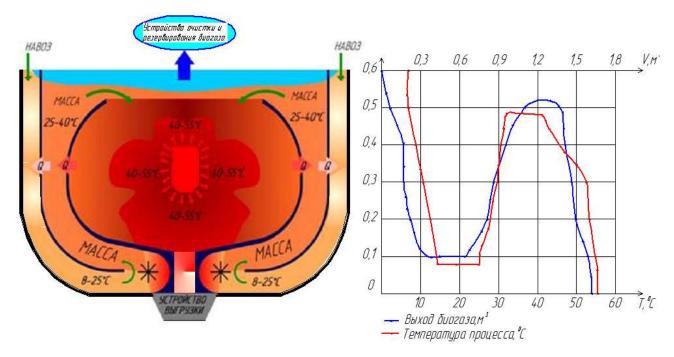


Рис. 4. Схема физической модели процесса метанового сбраживания

Исходя из проведенных экспериментов, обосновали объединение в единый цикл (реактор) трех стадий метанового сбраживания с различными видами нагрева метантенка и выявили основные режимы сбраживания (психрофильный при $8...25^{\circ}$ C, мезофильный при $25...40^{\circ}$ C и термофильный при $40...55^{\circ}$ C).

Возможность объединения психрофильного, мезофильного и термофильного режимов метанового сбраживания проверена и подтверждена экспериментально на данной установке рис.4.

В результате проведенных опытов и разработке биогазовых установок получили следующие выводы:

- проведенные эксперименты на опытных биогазовых установках непрерывного действия показывают адекватность полученных аналитических выражений режимов технологического процесса сбраживания и параметров установки, спроектированных с помощью физических и математических моделей;
- перспективность проделанного метода получения биогаза для равномерного разогрева метантенка с объединением трех режимов сбраживания в единый цикл с шаровидной формой биореактора.

Список литературы:

- 1. Альтернативная энергетика. М.,[2008]. Режим доступа: http://www.medianapm.ru/biogaz.htm.
- 2. Зависимость продолжительности сбраживания осадка от температуры брожения.-М.,[2008]. – Режим доступа: http://www.clickpilot.ru/canaliz.php?wr=254
- 3. Комплекс по переработке и утилизации органических отходов.- Режим доступа: http://www.koud.ru/.
- 4. Устройство и принцип работы биогазовой станции.- М.,[2011]. Режим доступа: www.zorgbiogas.ru
- 5. Технология и аппаратура искусственной биологической очистки. М.,[2007]. Режим доступа: http://www.sergeyosetrov.narod.ru/Documents/Waste_from_food_ind_plant_3.htm.