Прочность и деформативность усиленных композитными материалами балок при различных варьируемых факторах

Д.Р. Маилян, П.П. Польской

Влияние различных видов композитных материалов и других варьируемых факторов на прочность и деформативность усиленных балок, определялось методом прямого сопоставления результатов экспериментов. В качестве эталонных, были приняты обычные железобетонные балки без композитного усиления.

Результаты проведенных испытаний по прочности и их первичная обработ-ка приведены в столбах 5 и 6 табл. 1.

Проведенные эксперименты показали, что эффективность усиления железобетонных конструкций композитными материалами зависит от всех варьируемых факторов, перечисленных в задачах исследования а именно: вида стальной арматуры и композитного материала; процентов стального и композитного армирования; наличия или отсутствия анкерующих композитные материалы устройств.

Уровень приращения прочности балок с A500 первого этапа исследования, усиленных **стеклопластиком**, оказался практически в два раза выше по сравнению с аналогично усиленными образцами с A600 второго этапа. Указанное соотношение сохраняется и при двукратном увеличении площади поперечного сечения композитного материала. Таким образом, можно отметить, что с увеличением процента стального армирования, обратно пропорционально изменяется эффективность композитного усиления с использованием стеклоткани.

Прочность балок, усиленных стеклопластиком, на I этапе проведения опытов увеличивается вместе с увеличением площади сечения композитного материала. С ростом процента стального армирования (балки II этапа) эффективность усиления снижается при одновременном уменьшении уровня приращения прочности.

Степень приращения прочности опытных образцов, усиленных **углепла- стиком** в балках первого этапа оказалась сопоставимой с усилением стеклотканью. Однако при увеличении площади сечения углепластика в два раза, эффект приращения несущей способности наоборот уменьшился примерно на 20%. Балки второго этапа, у которых процент стального армирования в два раза больше, по-

казали практически нулевой процент приращения нагрузки из-за отрыва защитного слоя бетона. Последнее свидетельствует о том, что усиление балок с использованием большой площади композитной арматуры делает это усиление не эффективным, если отсутствуют конструктивные мероприятия. При этом, несущая способность такого сечения сопоставима с прочностью эталонного образца.

Таблица № 1 Результаты испытания опытных балок по прочности

Этапы испытан. балок по виду сталь- ной ар-ры	Серия бал	Шифр балок	Пло- щадь ком- пози- та, см ²	Опыт- ная проч- ность балок N_s^{exp} , N_f^{exp} , κH	Мах. приращение несущей способности $N_f^{\rm exp}/N_s^{\rm exp}$,	Нагрузка $N_{ult}^{\rm exp}$ при предельно допустимом прогибе $f_{ult} = l_o/20$ $0\kappa H$	Прира- щение предель- но допу- стимой нагр. $N_{ult}^{\rm exp}/N_{s}^{\rm exp}$
1	2	3	4	5	6	7	8
I этап	А эталон	Б-1-1	-	57,9	-	57,7	-
		Б-1-2	ı	60,6	-	60,6	-
	Б стеклоткань	БУд-1-1	0,765	72,5	22,4	69,5	17,49
		БУд-1-2	1,53	90,8	53,2	75,5	27,64
	В углеткань	БУс-1-1	0,622	93,6	58,0	93,6	58,24
		БУс-1-2	1,245	84,0	41,8	84	42
	Г углеламинат	БУL-1-1	0,7	96,0	62,0	96	62,29
		БУL-1-2	1,4	84,0	41,8	84	42
	Д углеламинат +анкеры	БУг*-1-1	0,7	120,0	102,5	100	69,06
		БУL*-1-2	1,4	140,1	136,3	129	118,1
II этап.	А эталон	БУ-2-1	-	125,2	-	111	-
		БУ-2-2	-	124,6	-	110	-
	Б стеклоткань	БУд-2-1	0,765	140,0	12,1	113,5	2,7
		БУд-2-2	1,53	151,0	20,9	116	4,97
		БУд-2-3	1,53	148,3	18,7	113	2,26
	Тоже + по- луанкеры	БУg*-2-4	1,53	155,8	24,7	116	4,9
	В углеткань	БУс-2-1	0,622	148,0	18,5	131	18,55
		БУс-2-2	1,245	134,0	7,3	131	18,55
	Г углеламинат	БУL-2-1	0,7	133,7	7,04	127	14,9
		БУL-2-2	1,4	128,0	2,48	128	15,84
	Д углеламинат +анкеры	БУL*-2-1	0,7	166,0	32,9	132,5	19,9
		БУL*-2-2	1,4	206,0	64,9	150	35,75

Примечание: символом $N_s^{\rm exp}$ и $N_f^{\rm exp}$ обозначена величина опытной нагрузки, приложенной на траверсу, соответственно при испытании эталонной или усиленной балки.

Наличие U — образных анкеров на торцах усиливающих элементов резко увеличивает несущую способность усиленных балок, которая сопоставима с предельной прочностью железобетонного элемента с одиночной арматурой. При этом эффективность анкеров несколько снижается при увеличении прочности стали и при резком увеличении процента стального армирования.

Все изложенное свидетельствует о том, что усиление нормальных сечений балок не может происходить без усиления наклонных сечений. Необходима также и разработка других конструктивных мероприятий, обеспечивающих равнопрочность нормальных и наклонных сечений.

На основе опытных данных были построены графики (рис.1) зависимости прогибов балок от величины действующих нагрузок для всех опытных образцов, испытанных на I и II этапах. При сравнении указанных графиков, на всем диапазоне нагрузок, деформативность эталонных балок второго этапа с арматурой класса A600 заметно ниже по сравнению с аналогичными балками первой серии, где рабочая арматура — A500. Это вполне объяснимо и связано как с прочностью арматуры, которая для класса A600 в 1,2 раза выше, так и вдвое большим процентом стального армирования.

Деформативность балок, усиленных **стеклотканью**, практически не отличается от эталонных образцов первого и второго этапов исследований.

Деформативность балок, усиленных разными видами **углепластика** заметно ниже по сравнению с эталонными образцами и практически не зависит от вида стальной арматуры. Вместе с тем, степень влияния разного вида композита – различна.

Увеличение процента композитного армирования приводит к уменьшению деформации опытных образцов, вне зависимости от вида композитных волокон.

При этом степень влияния величины μ_f – также различна.

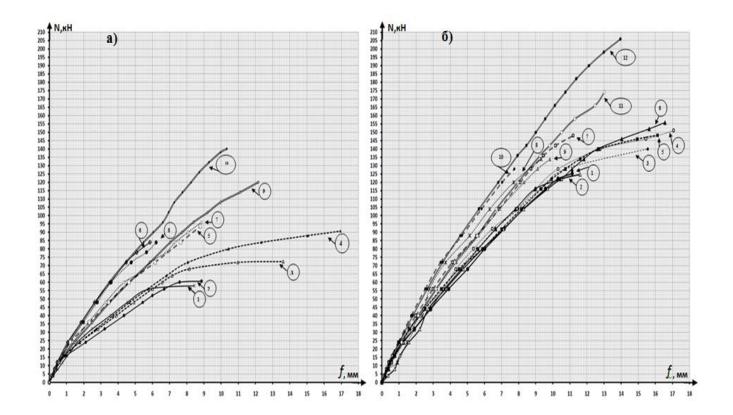


Рис. 1.— Сопоставление зависимости прогибов эталонных и усиленных опытных балок в зависимости от величины нагрузки при испытании на первом (а) и втором (б) этапах эксперимента

Цифрами 1-12 обозначен шифр опытных образцов:

Деформативность однотипных балок, усиленных стеклопластиком, резко отличается в балках I и II этапов. Она меньше там, где выше класс арматуры и больше её площадь. Для балок, усиленных углепластиком, различие не столь велико.

Наличие анкерных устройств U – образной формы на торцах углеламинатов или холстов из углеткани уменьшает деформативность балок, независимо от класса арматуры и одновременно резко повышает прочность. При этом прочность увеличивается вместе с ростом сечения композитного усиления.

Приведенные данные о прогибах балок на обоих этапах исследования, свидетельствуют об их зависимости от класса арматуры, вида композитного материала и процентов их армирования, которые в должной мере пока не учитываются в расчёте.

Литература

- 1. П.П. Польской, Д.Р. Маилян «Композитные материалы как основа эффективности в строительстве и реконструкции зданий и сооружений» : Эл. журнал «Инженерный вестник дона», № 4,Ростов-на-дону,2012.
- 2. П.П. Польской, Мерват Хишмах, Михуб Ахмад. «О влиянии стеклопластиковой арматуры на прочность нормальных сечений изгибаемых элементов из тяжелого бетона». : Эл. Журнал «Инженерный вестник Дона» №4, Ростов-на-Дону, 2012.
- 3. СП63.13330.2012 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003.М.:ФАУ«ФЦС»,2012.С.155.
- 4. ГОСТ 10180-90 Бетоны . Методы определения прочности по контрольным образцам.-Введ.1991-01-01.-М.:Изд-во стандартов,1990. с.36
- 5. ГОСТ 12004-81: Сталь арматурная. Методы испытания на растяжение. Введ.01.07.1983.-М.:Изд-во стандартов,1981.
- 6. ГОСТ 25.601-80 «Методы механических испытаний композиционных материалов с полимерной матрицей (композитов) Метод испытания плоских образцов на растяжение при нормальной, повышенной и пониженной температурах».
- 7. Руководство по усилению железобетонных конструкций композитными материалами. Под руководством д.т.н., проф. В.А. Клевцова. М.: НИИЖБ, 2006 48с.
- 8. ГОСТ 8829-94 Изделия строительные железобетонные и бетонные заводского изготовления. Методы испытаний загружением. Правила оценки прочности, жесткости и трещиностойкости. Взамен ГОСТ 8829-85;введ. 01.01.1998. —М.: Госстрой России ГУП ЦПП, 1997 33с.
- 9. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. ACI 440.2R-02. American Concrete Institute.
- 10. Guide for the design and construction of externally bonded FRP systems for strengthening concrete tructures. ACI 440.2R-08. American Concrete Institute.
- 11. Eurocode 2: Design of concrete structures Part 1-1: General rules and rules for buildings, 2004.