Калибровка станков с числовым программным управлением с помощью лазерного трекера VINTAG

HO.И. Пимиин 1 , HO.B. Заяров 1 , HO.M. Бурдаков 1 , HO.M. Науменко 2 , HO.M. Постой 1

¹Волгодонский инженерно-технический институт — филиал национального исследовательского ядерного университета «МИФИ»,

²Донской государственный технический университет (ДГТУ)

Аннотация: В статье приведены результаты выполненных работ при калибровке металлорежущего станка. Рассмотрена технология выполнения контроля. Сделано заключение, в котором констатируется, что лазерные трекеры, в том числе и измерительная машина марки Vintag изготовляемая фирмой Faro, обладают высокой оперативностью решения задач калибровки. Их программное обеспечение имеет возможность выполнять обработку результатов измерений и подготовку отчетов непосредственно на площадке выполнения работ и выдавать результаты на месте. Обеспечивать точность измерений пространственных координат 0.005-0.01 мм на расстояниях до 10000-15000 мм. Все эти характеристики позволяют рекомендовать машиностроительным предприятиям использование таких и аналогичных измерительных машин для решения задач калибровки металлорежущих станков.

Ключевые слова: Лазерный треккер, измерения, геометрические параметры, прямолинейность, перпендикулярность, метрология, калибровка, метрологические характеристики.

Современное машиностроительное производство характеризуется высоким уровнем автоматизации процесса металлообработки. При этом как правило плазма-, газорезательное оборудование, токарные, карусельные, фрезерные станки выполнены с числовым программным управлением [1, 2]. Для обеспечения метрологического сопровождения машиностроительного необходимо тарировать вышеперечисленное производства ежегодно оборудование. При этом под процессом тарировки понимается определение и оценка двух характеристик это геометрическая точность работающего свойства. К оборудование его метрологические геометрическим характеристикам относятся параметры прямолинейности направляющих их параллельности, перпендикулярности, горизонтальности, вертикальности, и т.д. К метрологическим параметрам относятся характеристики точности наведения рабочего органа на заданные координаты.

Работы ПО перечисленного оборудования тарированию типа выполняют с использованием высокоточного измерительного оборудования, одним из которых является класс приборов - лазерные трекеры. Авторами статьи использован такого типа прибор марки Vintag изготовленный фирмой Faro для решения задач тарирования, см. рис.1. Например, для калибровки и контроля геометрических параметров фрезерного станка ИР – 1600МФ4-4 порядок выполнения работ состоял в следующем. Измерительную машину Vintag установили примерно на оси X-X. В шпинделе закрепили щуп, состоящий из тетраэдрического зеркала, точно закрепленного внутри поворотной сферы см. рис. 2. При этом диаметр отражателя, используемого в данном комплекте равен 1,5 дюйма (38,1 мм).

Затем последовательно перегоняли салазки вдоль оси X-X, шпиндель и колонну вдоль оси Z-Z, шпиндельную бабку вдоль оси У-У, см. рис.3. При этом перестановку вдоль каждой оси выполняли интервалами движения равному 100 мм, который задавался на компьютере станка.

Рис.1. – Лазерный трекер

Рис.2. – Отражатели (щупы) трекера

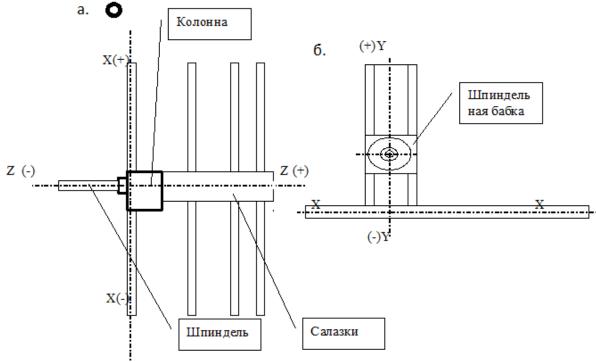


Рис.3.— Схема контролируемых элементов станка:

а – вид сверху; б – вид со стороны шпинделя;

С – станция стояния прибора.

При каждой остановке движения осуществляли координирование щупа лазерным треккером. При обработке результатов полевых измерений определялись характеристики несоответствия средней практической перемещения $\Delta A_{\text{(интервал)}}$ величины ползунов ПО соответствующим направляющим - номинальному значению и среднюю квадратическую ошибку $m_{(nos)}$ позиционирования рабочего органа оборудования. Так для определения этих величин использовали формулы:

$$\Delta A_{(\text{интервал})} = \frac{\sum_{i=1}^{n} \left[\left(A_{(\text{прибора}) \ i)} - A_{(\text{прибора}) \ i+1)} \right) - \mathcal{E}_{(\text{ном})} \right]}{n} , \tag{1}$$

$$m_{(\Pi O3)} = \sqrt{\frac{\sum_{i=1}^{n} \left[A_{(\Pi P u \delta opa) \ i)} - A_{(\Pi P u \delta opa) \ i+1)} \right]^{2}}{n}},$$
(2)

где $\Delta A_{(интервал)}$ — величина несоответствия средней практической величины интервала перемещения - номинальному значению; $A_{(прибора)}$ — величина отрезка измеренная при i и (i+1) остановках ползунов станка; $A_{(ставнка)}$ — величина отрезка, измеренная станком при его i остановке; n— количество интервалов; $m_{(поз)}$ — средняя квадратическая ошибка позиционирования.

Так в качестве метрологических характеристик станка получили значения, приведенные в табл. 1

Таблица № 1. Результаты калибровки станка

Калибровка	Значение		Средняя	Величина	Средняя	
при	номинального		практическая	несоответствия	квадратическая	
движении	шага		величина	средней	ошибка	
вдоль оси	перемещения,		перемещения, мм	практической	позиционирования,	
	MM			величины -	MKM	
				номинальному		
				значению, мкм		
X-X	прямо	100	99.991	- 9	±13	
	обратно	100	99.992	-8	±13	
У-У	прямо	100	99.993	-7	±33	
	обратно	100	99.995	-5	±42	
Z-Z	прямо	100	100.010	+10	±36	
(колонны)	обратно	100	100.018	+18	±35	
Z-Z	прямо	100	100.002	+2	±30	
(шпинделя)	обратно	100	100.004	+4	±43	

Примечание:

1. Значение номинального шага (100 мм) перемещения задавался на компьютере станка в диапазоне 0–7500 мм;

2. Практическая величина пошагового перемещения определялась на каждом интервале, в том же диапазоне, итоговое практическое значение которого составило 0–7499,301 мм.

Геометрические характеристики станка определялись с учетом того, что все измерения, выполненные при калибровке (пример некоторых результатов см. табл.2) осуществлялись в единой системе координат, в соответствии с этим, вычисление параметров осуществлялось по стандартным геометрическим зависимостям и их результаты в графическом виде представлены на рис. 4, рис. 5 [3].

Таблица № 2. Контроль геометрических параметров при движении колонны вдоль оси X-X

№ п\п	' '		Разность отметок	Параметры прямолинейности		Накопление величин перемещений воль оси X-X, S		
	Н прямо	Н обратно		прямо	обратно		прямо	обратно
	MM	MM	ММ	δ прямо, мм	δ обратно, мм	S теор, мм	S прямо, мм	S обратно, мм
1	-1.969	-2	0.031	0	0	0	0	0
	-1.974	-2	0.026	0	0	100	100	100
9	-1.979	-2.121	0.142	0.024454	-7.72E-12	200	199.9896	200
10	-1.897	-2.045	0.148	-0.00779	-0.02451	300	299.9882	300.007497
11	-1.893	-2.100	0.207	0.004685	-0.0008	400	399.9958	399.985899
12	-1.875	-2.013	0.138	-0.01558	0.041627	500	599.9764	499.992503
	-1.868	-2.008	0.140	-0.005	0.025785	600		599.993604
47	-0.792	-0.854	0.062	-0.01119	0.0057	4100	4099.699	4099.7629
48	-0.811	-0.817	0.006	-0.0105	-0.0369	4200	4199.717	4199.7565
76	-0.111	-0.110	-0.001	-0.00953	-0.0075	7000	6999.359	6999.41316
77	-0.108	-0.081	-0.027	-0.05267	-0.01034	7100	7099.359	7099.40468
78	-0.059	-0.050	-0.009	0.011225	-3.10E-12	7200	7199.342	7199.37933
79	-0.036	0	-0.036	-0.01268	0	7300	7299.325	7299.325
80	-0.028	0	-0.028	-0.00167	0	7400	7399.308	7399.308
81	0.000	0	0.000	0	0	7500	7499.301	7499.301

В итоге выполнения работ необходимо заключить следующее. Лазерные трекеры, в том числе и измерительная машина марки Vintag изготовляемая фирмой Faro, обладают высокой оперативностью решения задач калибровки. Их программное обеспечение имеет возможность выполнять обработку результатов измерений и подготовку отчетов непосредственно на площадке выполнения работ и выдавать результаты на месте. Обеспечивать точность измерений пространственных координат 0,005–0,01 мм на расстояниях до 10000–15000 мм. Все эти характеристики позволяют рекомендовать машиностроительным предприятиям использование таких и аналогичных измерительных машин для решения задач калибровки металлорежущих станков.

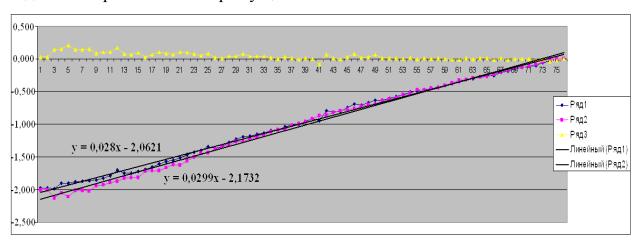


Рис.4. – График условных отметок вдоль оси Х-Х, Н (прямо, обратно), мм

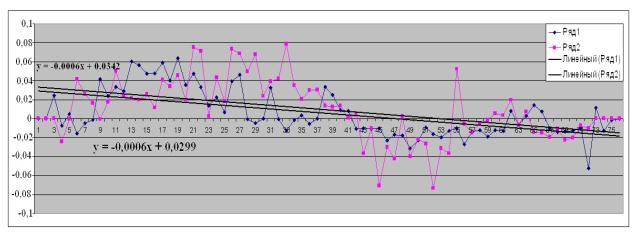


Рис.5.- Прямолинейность вдоль оси X-X, δ(прямо, обратно), мм

Литература

- 1. Пимшин Ю.И., Науменко Г.А., Арсеньев Д.М. Анализ геодезических методов контроля геометрических параметров технологического оборудования // Инженерный вестник Дона, 2014, №4. URL: ivdon.ru/ru/magazine/archive/n4y2014/2742
- 2. Пимшин Ю.И., Губеладзе А.Р., Арсеньев Д.М. Технический контроль при монтаже технологического оборудования // Инженерный

вестник Дона, 2014, №4. URL: ivdon.ru/ru/magazine/archive/n4p2y2014/2741

- 3. Пимшин Ю.И., Губеладзе О.А., Клюшин Е.Б., Заяров Ю.В., Наугольнов В.А., Арсеньев Д.М. Применение лазерного трекера для определения деформационных характеристик защитных оболочек // Безопасность ядерной энергетики: тез. докл. XI Междунар. научн.-практ. конф., 27-29 мая 2015 г. / ВИТИ НИЯУ МИФИ [и др.].- Волгодонск: [Б.и.], 2015.- 1 электнон. опт. диск [CD].-ISBN 978-5-7262-2114-4.
- 4. Пимшин Ю.И., Литвинова Л.Ф. О контроле геометрии радиального подкранового пути // «Прикладная геодезия», сб. научн. статей Ростов н/Д: Рост. гос. строй. ун-т., 1999.- Деп.ВИНИТИ 7.04.99, №1058-В99.- С.15-18.
- 5. Науменко Г.А. Метрологическое обеспечение геодезических работ, выполняемых при контроле монтажа технологического оборудования // Прикладная геодезия. Ростов н/Д: РГСУ, 1999.-С.42. Деп. ВИНИТИ 7.04.99, №1058-В99.- С.42.
- 6. Пимшин Ю.И., Пимшин И.Ю. Исследование методик обработки радиальных поверхностей // «Прикладная геодезия», сб. научн. статей Ростов н/Д: Рост. гос. строй. ун-т., 2004.- Деп.ВИНИТИ 21.10.2004, №1644-В2004.- С.43-49.
- 7. Шеховцов Г.А., Шеховцова Р.П. Современные геодезические методы определения деформаций инженерных сооружений. Н.Новгород: ННГАСУ, 2009. С.46-53.
- 8. Забазнов Ю.С., Гайрабеков И.Г., Пимшин Ю.И. Геодезический контроль геометрии выравниваемого здания // Инженерный вестник Дона, 2010, №4. URL: ivdon.ru/ru/magazine/archive/n4y2010/250
- 9. Malet J. P., Maquaire O., Calais E. The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the

Super-Sauze earthflow (Alpes-de-Haute-Provence, France) // Geomorphology. $-2002. - V. 43. - N_{\odot}. 1. - pp. 33-54.$

10. Schneider D. Terrestrial laser scanning for area based deformation analysis of towers and water damns //Proc. of 3rd IAG/12th FIG Symp., Baden, Austria, May. – 2006. – pp. 22-24.

References

- 1. Pimshin Ju.I., Naumenko G.A., Arsen'ev D.M. Inženernyj vestnik Dona (Rus), 2014, №4 URL: ivdon.ru/ru/magazine/archive/n4y2014/2742
- 2. Pimshin Ju.I., Gubeladze A.R., Arsen'ev D.M. Inženernyj vestnik Dona (Rus), 2014, №4. URL: ivdon.ru/ru/magazine/archive/n4p2y2014/2741
- 3. Pimshin Ju.I., Gubeladze O.A., Kljushin E.B., Zajarov Ju.V., Naugol'nov V.A., Arsen'ev D.M., XI Mezhdunar. nauchn.-prakt. konf., 27-29 maja 2015 g. "Bezopasnost' jadernoj jenergetiki": tez. dokl. (VITI NIJaU MIFI. XI International scientific and practical conference "Safety of nuclear power"). Volgodonsk, 2015, on CD. ISBN 978-5-7262-2114-4.
- 4. Pimshin Ju.I., Litvinova L.F. Prikladnaja geodezija. sb. nauchn. Statej. Rostov n/D: Rost.gos.stroj.un-t., 1999. Dep.VINITI 7.04.99, №1058-V99. pp.15-18.
- 5. Naumenko G.A. Prikladnaja geodezija. Rostov n/D: RGSU, 1999. p.42. Dep. VINITI 7.04.99, №1058-V99.
- 6. Pimshin Ju.I., Pimshin I.Ju. Prikladnaja geodezija. sb. nauchn. Statej. Rostov n/D: Rost.gos. stroj. un-t., 2004. Dep.VINITI 21.10.2004, №1644- V2004. pp.43-49.
- 7. Shehovcov G.A., Shehovcova R.P. Sovremennye geodezicheskie metody opredelenija deformacij inzhenernyh sooruzhenij [Modern geodetic methods for the determination of deformations in engineering structures]. N.Novgorod: NNGASU, 2009. pp.46-53.

- 8. Zabaznov Ju.S., Gajrabekov I.G., Pimshin Ju.I. Inženernyj vestnik Dona (Rus), 2010, №4 URL: ivdon.ru/ru/magazine/archive/n4y2010/250
- 9. Malet J. P., Maquaire O., Calais E. Geomorphology. 2002. V. 43. №. 1. pp. 33-54.
- 10. Schneider D. Proc. of 3rd IAG/12th FIG Symp, Baden, Austria, May. 2006. pp. 22-24.