Физико-биологические условия для проектирования защитной одежды от охлаждения человека на воздухе и воде

И. В. Черунова, Т. Ю. Лесникова

Донской государственный технический университет, г. Шахты, Россия

Аннотация: В статье представлено обоснование и системный анализ для проектирования защитной одежды от холода, основным средством расчета и оценки конструкции которой является математической моделирование. Представлены сведения о современных способах защиты человека от воздействия низкой температуры, сформированы отличия условий охлаждения человека в разных физических средах. На основе сформированного анализа данных о физиологических особенностях системы «Человек-Одежда-Среда» установлено воздействие на человека низких температур, которое приводит в действие терморегуляции. Представленные данные приводят ограниченному уравновешиванию тепловых характеристик тела человека и равномерности тепловых потоков, направленных от человека в окружающую среду. Основываясь на факте различия в формировании различных режимов охлаждения и теплового баланса человека воздушной и водной холодных сред, формируется обоснование математических моделей для таких систем.

Ключевые слова: теплозащитная одежда, проектирование, моделирование, физикобиологические особенности человека, одежда в воде, охлаждение человека.

Человек в силу климатических и производственных причин вынужден жить и работать в условиях холода [1]. Это могут быть бытовые и человек профессиональные условия, В которых должен длительное время. Существуют некомфортные температурные условия в помещениях [2]. Такой быть закрытых тип охлаждения может компенсирован с помощью внешних систем отопления [3], которые не имеют прямого сопряжения с человеком. В открытом холодном пространстве тепловой баланс человек ограничен собственной автономной системой. Она зависит частично от биологических возможностей его адаптации к холоду [4]. Однако риски охлаждения имеют большое влияние на здоровье. Современные исследования показали [5], что для различных групп населения в разных регионах наблюдается зависимость роста сердечных заболеваний от При этом экономические интересы ряда европейских холода.

направлены на освоение Арктического региона. Он может превратиться в крупнейший в Европе район инвестиций. Только в Баренцевом регионе планируется около 140 млрд. евро инвестиций [4]. Такие перспективы делают вопрос безопасности жизни человека в холоде особенно важным. Однако человек имеет два средства защиты от открытого холода: биологическую терморегуляцию и защитную одежду [6]. Тип и конструкция защитной одежды от холода определяется условиями её применения. Воздействие холода на человека может быть сформировано на воздухе и в воде. Безопасное пребывание человека в воде имеет большое значение для развития дайвинга [4], особенно в профессиональной деятельности. Согласно данным результатов совместных исследований Министерства инфраструктуры и окружающей среды вместе с Министерством экономики в Гааге о потенциале морских и прибрежных районов долгосрочном установлено, что программа развития и освоения территорий северных морей до 2050 года включает активное участие в мероприятиях дайверов разного класса [6]. Условия охлаждения человека в разных физических средах имеют как сходства, так и существенные различия. Более низкие температуры охлаждения характерны для воздушной среды. Основную защиту от конвективного холода человеку обеспечивает многослойная одежда [7]. Многочисленные исследования подчеркивают, что многослойные конструкции одежды могут быть громоздкими и неудобными [7]. Это влияет на производительность труда человека и увеличение их мышечного напряжения и нагрузки. Производительность и безопасность людей в Арктике быть улучшена разработки новой может путем высокотехнологичной одежды [6]. Это возможно при использовании передовых технологий адаптации температуры и влаги, изоляции и интеграции датчиков, которые могут обнаруживать критические уровни холодового стресса и комфорта [6,8]. При этом свойства защитной одежды от

конвективного холода имеют относительно стабильные показатели в связи меньшей влажностью системы по сравнению с одеждой в воде. Поэтому в одежде для защиты от холодного воздуха эффективно применяются дополнительные источники искусственного обогрева [9]. Однако эффективность зависит от многих параметров в системе теплообмена человека со средой [10]. Для получения эффективной тепловой защиты человека необходимо установить требуемые характеристики мощности и площади нагреваемых деталей одежды. Однако условия эксплуатации одежды в охлаждающей среде связаны не только с тепловым воздействием, но и с деформацией самой одежды, что рассматривается в ряде научных работ [11]. В частности, под давление ветра или воды. Эти изменения необходимо учитывать при расчетах параметров конструкции защитной одежды и толщины ее материалов. Обозначенные задачи имеют большое значение для создания высокого уровня и надежности тепловой защиты человека. Для решения поставленных задач эффективным средством является использование численного моделирования. Сложность и специфика моделирования биотехнических систем заключается в том, что каждый компонент имеет собственную структуру и характеризуется большим количеством факторов [12].

Несмотря на большое многообразие современной одежды для защиты от холода, эффективность ее теплового эффекта остается в большой зависимости от правильного учета физиологии человека, свойств материалов и их изменений во время эксплуатации, а также от применения дополнительных искусственных средств терморегуляции [3].

Охлаждение организма в процессе производственной деятельности приводит к снижению работоспособности человек. Это может быть вызвано недостаточными или избыточными теплоизолирующими свойствами одежды

[11]. Анализ строения и биологических особенностей человека [13] позволил установить общую систему взаимодействия компонентов системы.

Для поддержки здоровья, хорошего самочувствия И высокой работоспособности требуется обеспечение температурной стабильности (гомеостаза) организма [14]. Нарушение температурного гомеостаза является следствием нарушения теплового баланса. Это приводит к напряжению механизмов терморегуляции и может оказывать существенное влияние на состояние различных функциональных систем человека (сердечнососудистой, нервной, дыхательной, эндокринной и др.) [15]. Определенная теплового баланса принадлежит доля поддержании естественной физиологической терморегуляции. Она частично компенсирует воздействие неблагоприятных внешних температур. К таким механизмам можно отнести реакцию возникновения «гусиной кожи» при переохлаждении, сужение сосудов [16]. В холодной среде небольшое снижение потерь тепла тела человека происходит за счет уменьшения градиента температуры между поверхностью тела и среды. Это происходит в результате охлаждения рецепторов кожи, спазмов кровеносных сосудов и увеличения термического организма. С сопротивления тканей течением времени происходит адаптация организма человека к пониженным температурам, но выполнение физической работы препятствует ЭТОМУ процессу акклиматизации [17]. Эти ресурсы человека имеют ограничения ресурсов. Низкие температуры окружающей среды оказывают влияние функционирование внутренних органов. Тепловое состояние человека оптимальное, допустимое, предельно различают как допустимое И недопустимое [10]. В условиях холода у человека может развиваться максимальное допустимое тепловое состояние, которое угрожает ему замерзанием и потерей жизненных функций [17]. Показатели теплового состояния человека определяются с учетом затрат энергии при конкретном

виде деятельности. К показателям теплового состояния человека относятся следующие [13]: температура ректальная; средневзвешенная температура кожи; средняя температура тела; изменение теплосодержания; увеличение сердечных сокращений частоты ударов минуту; влагопотери; теплоощущения; разность между температурой кожи груди и стопы. Температура кожи наиболее тесно связана с теплоощущениями человека и может служить информативным показателем о его тепловом состоянии [13,14,16]. На каждом квадратном миллиметре кожи имеется примерно 15 рецепторов, воспринимающих холод, один – реагирующий на тепло [13]. Их число значительно изменяется в зависимости от части тела человека. На туловище их заметно больше, чем на конечностях [14,15]. Через кожу температурный поток попадает внутрь и воздействует на организм человека, который адаптирован к работе в определенной температурной норме (в состоянии теплового баланса) [11]:

$$M + R = Q_{RAD} + Q_{CONV} + Q_{COND} + Q_{EVAP} + Q_{RESP} + L \pm D,$$
(1)

где M — энергетические затраты человека, Вт; R — внешняя тепловая нагрузка (солнечная радиация), Вт; $\mathcal{Q}_{\mathit{RAD}}$ — потери тепла радиацией; $\mathcal{Q}_{\mathit{CONV}}$ — потери тепла конвекцией, Вт; $\mathcal{Q}_{\mathit{EVAP}}$ — потери тепла испарением влаги, Вт; $\mathcal{Q}_{\mathit{COND}}$ — потери тепла кондукцией, Вт; $\mathcal{Q}_{\mathit{RESP}}$ — потери тепла вследствие нагревания вдыхаемого воздуха, Вт; D — дефицит или накопление тепла в организме, Вт; L —затраты тепла на механическую работу, Вт.

Теплоотдача из организма человека осуществляется в основном через кожу (83%) и слизистые оболочки, а регулируется за счет изменения циркуляции крови и изменения интенсивности потоотделения.

В зависимости от вида отдачи тепла организмом в состоянии покоя (при температуре среды около 20°С) теплоотдача в процентном отношении распределяется следующим образом: конвекция - 31,0%, излучение

(радиация) - 43,74%, испарение - 21,71%, нагревание пищи - 1,55%, нагревание воздуха в легких - 1,30%, потеря тепла с выделениями - 0,70% [13]. Потери тепла теплопроводностью описываются законом Фурье [18]. Потери конвекцией осуществляются тепла путем передачи поверхностью тела или одежды человека движущемуся около него воздуху, что составляет около 25-30% общих теплопотерь. Потеря тепла излучением многогранно исследована учеными [13,14 и другие] и имеет обратный процесс – поглощение лучистой энергии. Коэффициент испарения зависит от теплозащитных свойств одежды и скорости движения окружающего воздуха [18]. Однако охлаждение человека может быть вызвано не только холодным воздухом, но и холодной водой. При нахождении в водной среде на организм человека действуют особые факторы: давление и температура воды [19].

Условия погружения в воду связаны с пребыванием в необычной для человека окружающей среде. Наибольшая нагрузка на организм при нахождении человека под водой идет на систему дыхания и терморегуляцию организма [20]. Физические свойства воды отличаются от свойств воздушной среды. Плотность воды в 775 раз больше плотности воздуха, теплоемкость в 4 раза, теплопроводность в 25 раз больше, чем у воздуха. На различных глубинах вода имеет различную температуру. Обмен тепла между поверхностными и глубинными слоями воды происходит медленнее, чем в воздушной среде. Нагревается вода морей и океанов за счет солнечной энергии. Верхний слой воды толщиной 1 см поглощает 94% солнечного тепла. Плотность чистой воды без соли при 0°С при атмосферном давлении составляет 1000 кг/м3. В открытом океане диапазоны плотности примерно от 1021 кг/м3 (у поверхности моря) до 1070 кг/м3 (при давлении из 10,000 dBar), (Рис.1) [21].

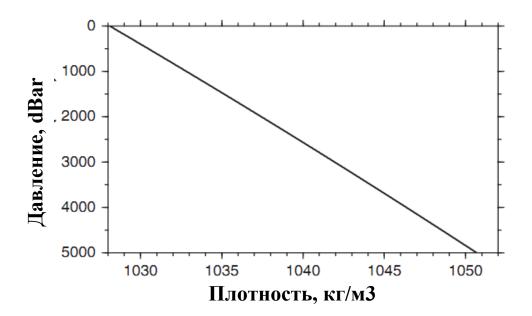


Рис. 1 - Возрастание плотности при давлении на участок воды, температурой 0°С и соленостью 0,35 на поверхности моря [21].

На терморегуляцию организма в водной среде помимо температуры воды значительную роль оказывает неравномерное давление столба воды на отдельные части тела, особенно в вертикальном положении. В первую очередь это сказывается на кровообращении и дыхании. Если при охлаждении в воздушной среде скрытый период терморегуляции происходит в течение 30-40 мин., то в воде он не превышает 2-3 мин.

Критическая точка повышения теплопродукции в воде определяется при более высокой температуре среды (34-35°С) вместо 28-29°С на воздухе. Вода является лучшим проводником тепла, чем воздух. При экстремальном воздействии холодной воды (температура ниже 20°С) для выживания, происходит ступенями увеличение скорости обмена веществ, благодаря холодовым рецепторам в коже [19]. Движение человека в воде увеличивает потерю тепла через кожу.

Когда температура воды опускается ниже 12°C в организме человека наблюдается полная неспособность плавать и невозможность оставаться в воде дольше, чем 1 час [19]. Проводя анализ этих данных, следует отметить,

что диапазон возможностей терморегуляции человека очень ограничен и колеблется в пределах допустимого отклонения температуры тела лишь на 1°С, а влияние внешних температурных воздействий очень велико [13,14]. Анализ представленных данных о физиологических особенностях системы «Человек-Одежда-Среда» при воздействии на неё тепловых потоков различного характера позволил выявить следующее: воздействие на человека низких температур приводит в действие систему терморегуляции. Она активно поддерживается физиологическими и химическими процессами, усиливается собственная теплопродукция человека и скорость кровотока. Это приводит к ограниченному уравновешиванию тепловых характеристик тела человека и равномерности тепловых потоков, направленных от человека в окружающую среду.

Важную роль в спасении людей, попавших в воду, является их экипировка. При этом при попадании человека в воду меняется полностью вся система его жизнедеятельности, которая была предусмотрена на воздухе, что представлено в разработанных схемах ниже (Рис. 2, 3).

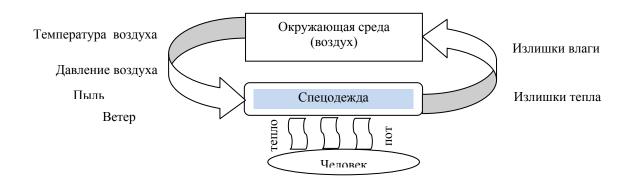


Рис. 2. – Система взаимосвязи факторов охлаждающей воздушной среды и одежды с человеком

Рис. 3 — Система взаимосвязи факторов водной среды и одежды с человеком.

Для проектирования защитной одежды от холода основным средством расчета и оценки конструкции является математической моделирование [11]. Сложность представленной биотехнической системы в части работы организма человека требует специальных подходов и ограничений.

Учитывая, что воздушная и водная холодная среда формируют разные режимы охлаждения и теплового баланса человека, математические модели для таких систем имеют свои особенности.

Литература

- 1. Талыбов М.А., Сафаров Д.Т, Черунова И.В., Сирота Е.Н., Колесник С.А. Экспериментальные исследования для развития информационной базы минеральных вод материалы // Инженерный вестник Дона, 2014, № 3. URL: ivdon.ru/ru/magazine/archive/n3y2014/2536.
- Cherunova I., S. Samarbakhsh and N. Kornev, 2016. CFD simulation of thermo- aerodynamic interaction in a system human cloth-environment under very low temperature and wind conditions. Proc. VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece, 5-10 June 2016. – Volume IV. - pp. 7703-7710.
- 3. Сирота Е.Н. Развитие технологий проектирования гидрокостюмов // Инженерный вестник Дона, 2016, № 3. URL: ivdon.ru/ru/magazine/archive/n3y2016/3696.

- 4. Ryti, N.RI., Y. Guo and J.JK. Jaakkola, 2016. A Systematic Review and Meta-Analysis. Environmental Health Perspectives. Global Association of Cold Spells and Adverse Health Effects, 124(1): pp.12-22.
- 5. Lipponen P. 2015, Strategic Vision for the North: Finland's prospects for economic growth in the Arctic region. Confederation of Finnish Industries EK, Helsinki: p. 48
- 6. Черунова И. В. Оптимизация параметров защитной одежды для защиты от холода // Дизайн и технологии. 2009. №11. С. 62-67.
- 7. Jussila K. 2016. Clothing Physiological Properties of Cold Protective Clothing and Their Effects on Human Experience. Thesis for the degree of Doctor of Science in Technology. Tampere University of Technology: pp.171
- 8. Wang F., C.Gao, K.Kuklane and I.Holmér, 2010. A Review of Technology of Personal Heating Garments. International Journal of Occupational Safety and Ergonomics (JOSE), 16(3): pp.387–404.
- 9. Черунова И. В. Люди. Одежда. Окружающая среда // Охрана труда и социальное страхование. 2008. №6. С. 101-104.
- Kuklane K., I.Holmér, 2000. Ergonomics of Protective Clothing. Proceedings of 1st European Conference on Protective Clothing. National Institute for Working Life: p. 323
- 11. Черунова И. В., Галузо Ю. А., Куренова И. В. Аспекты математических моделей теплового обмена с телом человека // Современные наукоемкие технологии. 2013. №8-1. С. 30-31.
- 12. Holmér I. and K.Kuklane, 1998. Problems with cold work. Proceedings from an international symposium held in Stockholm, Sweden, November 16–20, Arbetslivsinstitutet & författarn: p. 282
- Zakharov V. M. and I. E. Trofimov, 2014. Homeostatic mechanisms of biological systems: Development homeostasis. Russian Journal of Developmental Biology, 45(Issue 3): pp. 105–116.

- 14. Schellen L. 2010. Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition. Indoor Air, 20(4): pp. 273-283.
- 15. Lehmuskallio E .2001. Cold protecting emollients and frostbite. Academic Dissertation to be presented with the assent of the Faculty of Medicine, University of Oulu, National Defence College in Santahamina, Helsinki: p. 96
- 16. Manto M. 2014. Abnormal Copper Homeostasis: Mechanisms and Roles in Neurodegeneration. Toxics, issue 2: pp. 27-345.
- 17. Leonard W.R. 2010. Measuring human energy expenditure and metabolic function: Basic principles and methods Article in Journal of anthropological sciences. Journal of Anthropological Science, 88: pp. 221-230.
- 18. ALEXIOU S. 2014. The effect of water temperature on the human body and the swimming effort Journal Biology of Exercise, 10 (2): pp. 9-23.
- 19. Kurazumi, Y., L.Rezgals and A. K. Melikov. 2014. Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling. Journal of Ergonomics. 4(1): pp. 7-11.
- 20. Aguilella-Arzo M., A.Alcaraz and V.M. Aguilella, 2003. Heat loss and hypothermia in free diving: Estimation of survival time under water. Journal of Physics, 71(4): pp. 333-337.
 - 21. Talley, L., G. Pickard, W. Emery and J. Swift, 2011. Physical Properties of Seawater. Descriptive Physical Oceanography, Academic Press, pp. 29.

References

1. Talybov M.A., Safarov D.T, Cherunova I.V., Sirota E.N., Kolesnik S.A. Inženernyj vestnik Dona (Rus), 2014, № 3. URL: ivdon.ru/ru/magazine/archive/n3y2014/2536.

- 2. Cherunova I., S. Samarbakhsh and N. Kornev, 2016. VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece, 5-10 June 2016, Volume IV: pp. 7703-7710.
- 3. Sirota E.N. Inženernyj vestnik Dona (Rus), 2016, № 3. URL: ivdon.ru/ru/magazine/archive/n3y2016/3696.
- 4. Ryti, N.RI, Y. Guo and J.JK. Jaakkola, 2016. Global Association of Cold Spells and Adverse Health Effects, 124(1): pp.12-22.
- 5. Lipponen P. 2015, Confederation of Finnish Industries EK, Helsinki: p. 48
- 6. Cherunova I. V. Dizayn i tekhnologii. 2009. №11. pp. 62-67.
- 7. Jussila K. 2016. Clothing Physiological Properties of Cold Protective Clothing and Their Effects on Human Experience. Thesis for the degree of Doctor of Science in Technology. Tampere University of Technology: pp.171
- 8. Wang F., C.Gao, K.Kuklane and I.Holmér, 2010. International Journal of Occupational Safety and Ergonomics (JOSE), 16(3): pp.387–404.
- 9. Cherunova I. V. Lyudi. Okhrana truda i sotsial'noe strakhovanie. 2008. №6. pp.101-104.
- Kuklane K., I.Holmér, 2000. Ergonomics of Protective Clothing. Proceedings of 1st European Conference on Protective Clothing. National Institute for Working Life: p. 323
- 11. Cherunova I. V., Galuzo Yu. A., Kurenova I. V. Modern high technologies. 2013. №8-1. pp.30-31.
- 12. Holmér I. and K.Kuklane, 1998. Problems with cold work. Proceedings from an international symposium held in Stockholm, Sweden, November 16–20, Arbetslivsinstitutet & författarn: p. 282
- 13. Zakharov V. M. and I. E. Trofimov, 2014. Russian Journal of Developmental Biology, 45(Issue 3): pp. 105–116.
- 14. Schellen L. 2010. Indoor Air, 20(4): pp. 273-283.

- 15. Lehmuskallio E .2001. Academic Dissertation to be presented with the assent of the Faculty of Medicine, University of Oulu, National Defence College in Santahamina, Helsinki: p. 96
- 16. Manto M. 2014. Abnormal Copper Homeostasis: Mechanisms and Roles in Neurodegeneration. Toxics, issue 2: pp. 27-345.
- 17. Leonard W.R. 2010. Journal of Anthropological Science, 88: pp. 221-230.
- 18. Alexiou S. 2014. Journal Biology of Exercise. 10 (2): pp. 9-23.
- 19. Kurazumi, Y., L.Rezgals and A. K. Melikov. 2014. Journal of Ergonomics. 4(1): pp. 7-11.
- 20. Aguilella-Arzo M., A.Alcaraz and V.M. Aguilella, 2003. Journal of Physics, 71(4): pp. 333-337.
- 21. Talley, L., G. Pickard, W. Emery and J. Swift, 2011. Descriptive Physical Oceanography, Academic Press, pp. 29.