Диагностика пьезокерамического элемента поактивной составляющей проводимости

В.Л. Земляков, С.А. Толмачев

Активная составляющая проводимости пьезокерамического элемента (ПКЭ) $G(\omega)$ является одной из основных частотных характеристик, позволяющих проводить диагностику ПКЭ. Она может быть записана в виде [1]:

$$G(\omega) = \frac{1}{R(1 + v^2(\omega)Q_{\rm M}^2)},\tag{1}$$

где R — активное сопротивление на частоте механического резонанса $\omega_p,\ \nu(\omega) = \omega/\omega_p - \omega_p/\omega,\ Q_{\rm M}$ — механическая добротность.

Рассматриваемая частотная характеристика может измеряться в непрерывном режиме, когда на ПКЭ воздействует синусоидальный сигнал с линейно изменяющейся частотой. Визуально наблюдаемая, например, на экране индикатора амплитудно-частотных характеристик, непрерывная функция $G(\omega)$ позволяет качественно оценить свойства ПКЭ.

В последнее время получили распространение измерительновычислительные комплексы на базе персонального компьютера, в которых измерение частотной характеристики активной составляющей проводимости проводится в дискретных точках k значений $G(\omega_k)$ с шагом по частоте $\Delta \omega_k$. При таких измерениях важно определить наибольшее значение $\Delta \omega_k$, при котором сохраняется достаточная точность получения результата, реализуется минимально возможный объем измерений и вычислительных операций.

Различные методы определения параметров ПКЭ по частотной характеристике активной составляющей проводимости рассмотрены, например, в [2-6].

Предполагая, что в зависимости от цели исследований ПКЭ, значение шага дискретизации может быть различным, рассмотрим определение $\Delta \omega_k$ для трех измерительных задач:

- 1. Восстановление непрерывной частотной зависимости активной составляющей проводимости по последовательности отсчетов (в соответствии с теоремой В.А. Котельникова) [7, 8];
- 2. Определение добротности ПКЭ и пьезомодуля материала через интеграл от активной составляющей проводимости (площадь под кривой) [9];
- 3. Определение добротности ПКЭ и пьезомодуля материала по максимальному значению производной от активной составляющей проводимости [10 12].

Для решения первой задачи выполним следующие операции.

Преобразуем $\nu(\omega)$ к виду $\nu(\omega)=2(\omega_p-\omega)/\omega_p$ и, используя обозначение $\alpha=\omega_p/2Q_{\rm M}$, для $G(\omega)$ получим

$$G(\omega) = \frac{\alpha^2}{R} \frac{1}{\alpha^2 + (\omega_p - \omega)^2}.$$
 (2)

Используя симметрию преобразования Фурье относительно переменных ω и t [7], для максимального шага дискретизации получим $\Delta \omega_m = 2\pi/T_c$, где T_c – длительность сигнала S(t), формирующего спектральную функцию $G(\omega)$.

Преобразование Фурье для функции $G(\omega)$, представленной в виде (2), имеет вид

$$S(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\alpha^2}{R} \frac{e^{j\omega t}}{\alpha^2 + (\omega_p - \omega)^2} d\omega = \frac{\alpha}{R} e^{-\alpha t} \cos \omega_p t.$$

Потребуем выполнения равенства $S(0)/S(T_c) = 100$ [8], тогда

$$\Delta\omega_m = \frac{\omega_p}{2Q_{\rm M}} \frac{2\pi}{\ln 100}.$$

Учитывая, что $Q_{\rm M}=\omega_p/\Delta\omega$, где $\Delta\omega$ — ширина резонансной кривой активной составляющей проводимости на уровне 0,5 от максимального значения, получим, $\Delta\omega_m\approx\Delta\omega/2$.

Учитывая рекомендацию выбирать $\Delta \omega_k$ в три — четыре раза меньше максимального значения, рекомендуемое число точек N в диапазоне значений, равном ширине резонансной кривой должно быть N=10, или

$$\Delta\omega_k \approx \Delta\omega/10$$
. (3)

Для решения второй задачи определим добротность через интеграл от активной составляющей проводимости.

Для вычисления интеграла $I = \int_{0}^{\infty} G(\omega) d\omega$, воспользуемся результатами работы [9], в которой соотношение (1) представлено в виде

$$G(\omega) = \frac{R}{L^2} \frac{\omega^2}{\omega^4 + \left(\frac{R^2}{L^2} - \frac{2}{LC}\right)\omega^2 + \frac{1}{L^2C^2}}$$

Тогда, используя обозначения

$$\mu = \frac{1}{2} \left(\frac{R^2}{L^2} - \frac{2}{LC} \right), \ \eta = \frac{1}{LC},$$

запишем

$$I = \frac{R}{2L^2} \int_{-\infty}^{\infty} \frac{\omega^2 d\omega}{\omega^4 + 2\mu\omega^2 + \eta^2}$$

После применения теоремы о вычетах получим

$$\int_{-\infty}^{\infty} \frac{\omega^2 d\omega}{\omega^4 + 2\mu\omega^2 + \eta^2} = 2\pi i \frac{-i}{2\sqrt{2(\mu + \eta)}}$$

Подставляя значения μ и η , в итоге получим

$$I = \int_{0}^{\infty} G(\omega)d\omega = \frac{\pi}{2} \frac{1}{L}.$$
 (4)

Воспользуемся известной из электротехники связью динамической индуктивности с добротностью. Тогда

$$I = \int_{0}^{\infty} G(\omega) d\omega = \frac{\pi}{2} \frac{\omega_p}{RQ_{\rm M}}.$$
 (5)

Для решения третьей задачи воспользуемся тем, что график активной составляющей проводимости имеет точку перегиба, соответствующую частоте максимума производной от активной составляющей проводимости по частоте ω_{\max} , как это сделано в работах [10 – 12]. Выполним дифференцирование выражения (1):

$$\frac{dG(\omega)}{d\omega} = G^{||}(\omega) = \frac{-2Q_{\mathrm{M}}^{2} v(\omega) v^{||}(\omega)}{R((1+v^{2}(\omega)Q_{\mathrm{M}}^{2}))^{2}} = \frac{-2Q_{\mathrm{M}}^{2} v(\omega) (1+\frac{\omega_{p}^{2}}{\omega^{2}})}{\omega_{p} R((1+v^{2}(\omega)Q_{\mathrm{M}}^{2}))^{2}}.$$

Выполним некоторые преобразования, опираясь на формулу (1).

Введем обозначение

$$\frac{(\omega - \omega_p)}{(\omega_1 - \omega_p)} = x,$$

где ω_1 соответствует частоте, на которой активная составляющая проводимости равна половине максимального значения.

Определим вторую производную от функции вида $1/(1+x^2)$ и приравняем ее к нулю. В результате получим

$$\left(\frac{1}{1+x^2}\right)^{|\cdot|} = \frac{-2+6x^2}{\left(1+x^2\right)^3} = 0.$$

Из последнего выражения следует, что $x = 1/\sqrt{3}$, следовательно, получаем

$$\frac{(\omega_{\text{max}} - \omega_p)}{(\omega_1 - \omega_p)} = \frac{1}{\sqrt{3}}.$$
 (6)

Значение производной на частоте максимума, с учетом равенства (6), определяется по формуле

$$G^{||}(\omega_{\max}) = \frac{4Q_{\rm M}^{2}(\frac{2(\omega_{\max} - \omega_{p})}{\omega_{p}})}{\omega_{p}R \left(1 + (\frac{2(\omega_{\max} - \omega_{p})}{\omega_{p}}Q_{\rm M})^{2}\right)^{2}} =$$

$$= \frac{4Q_{M}(\frac{(\omega_{\max} - \omega_{p})}{(\omega_{1} - \omega_{p})})}{\omega_{p}R (1 + (\frac{(\omega_{\max} - \omega_{p})}{(\omega_{1} - \omega_{p})})^{2})^{2}} = \frac{1.3 Q_{M}}{\omega_{p}R}.$$

В итоге получим

$$Q_{\rm M} = \frac{0.77 \,\omega_p \,G^{\mid}(\omega_{\rm max})}{G^{\mid}(\omega_p)} \approx \frac{\pi}{4} \frac{\omega_p \,G^{\mid}(\omega_{\rm max})}{G^{\mid}(\omega_p)}. \tag{7}$$

Для проведения исследования трех рассмотренных измерительных задач с использованием среды программирования Matlab были разработаны соответствующие приложения.

В результате компьютерного эксперимента для эквивалентной электрической схемы ПКЭ с исходной добротностью $Q_{ucx} = 100$ были получены результаты, представленные на рис. 1 a, δ : рис. 1 a соответствует погрешности определения добротности по формуле (4), а рис. 1 δ – определения добротности по формуле (7).

Погрешность определения величины добротности в зависимости от числа точек N в диапазоне значений, равном ширине резонансной кривой активной составляющей проводимости рассчитывалась по формуле

$$\Delta\% = 100\% \frac{\left| Q_{\rm M} - Q_{ucx} \right|}{Q_{ucx}}.$$

Поскольку при определении добротности путем интегрирования результат зависит от расположения точек измерения, на рис. 1 a приведены наибольшие значения погрешности при фиксированном N.

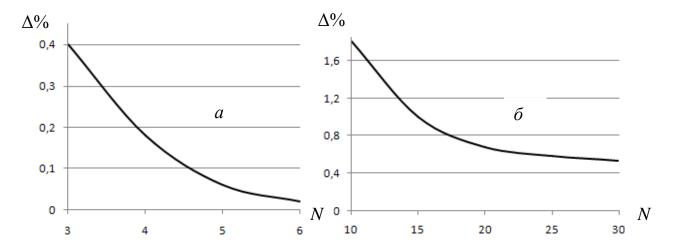


Рис. 1. Зависимость погрешности определения добротности от числа точек в диапазоне значений, равном ширине резонансной кривой

Из представленного материала следует, что, в зависимости от цели исследований ПКЭ, количество точек измерения активной составляющей проводимости (значение шага дискретизации) может быть различным:

для восстановления непрерывной частотной зависимости активной составляющей проводимости по последовательности отсчетов (в соответствии с теоремой В.А. Котельникова) необходимо иметь шаг дискретизации по частоте соответствующий наличию примерно 10 точек в диапазоне значений, равном ширине резонансной кривой активной составляющей проводимости;

- для определения добротности ПКЭ через интеграл от активной составляющей проводимости (площадь под кривой) необходимое количество точек измерения в том же диапазоне не менее 5 6;
- для определения добротности ПКЭ по максимальному значению производной от активной составляющей проводимости количество точек в диапазоне значений, равном ширине резонансной кривой активной составляющей проводимости составляет не менее 15 – 20.

Работа выполнена на оборудовании ЦКП «Высокие технологии» ЮФУ при финансовой поддержке Минобрнауки России в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2013 годы».

Литература:

- 1. Пезокерамические преобразователи: Справочник. / Под ред. С.И.Пугачева. Л.: Судостроение, 1984. – 256 с.
- 2. Акопьян В. А., Соловьев А. Н., Шевцов С. Н. Методы и алгоритм определения полного набора совместимых материальных констант пьезокерамических материалов. Ростов н/Д: Изд-во ЮФУ, 2008. 144 с.
- 3. Земляков В. Л. Методы и средства измерений в пьезоэлектрическом приборостроении: монография. Ростов н/Д: Изд-во ЮФУ, 2009. 180 с. (Пьезоэлектрическое приборостроение. Т. 5).
- 4. V.L. Zemlyakov Methods for Determination of the Piezoelectric Coefficient of Piezoceramic Materials in Terms of Parameters of an Equivalent Circuit of a Piezoelement // Piezoelectrics and Related Materials: Investigations and Applications. Pub. Date: 2012 2nd Quarter, p. 117-142.
- Zemlyakov V.V., Zemlyakov V.L. A new approach to measuring the piezomodulus of a piezoceramic material under dynamic conditions // Measurement Techniques. 2002. V. 45. N 4. P. 421.

- Земляков В. Л. Измерение пьезомодуля по активной составляющей проводимости пьезокерамического элемента // Измерительная техника.
 № 8. С. 64–66.
- 7. Радиотехнические цепи и сигналы. / Под ред. К.А. Самойло. М.: Радио и связь, 1982. 528 с.
- 8. Земляков В. Л. О дискретности записи частотной характеристики проводимости пьезоэлементов // Сборник трудов Междунар. научнопрактич. конф. «Актуальные проблемы пьезоэлектрического приборостроения». Ростов н/Д: Изд-во ООО «ЦВВР», 2006. С. 160–162.
- 9. Патент РФ 1648175 МПК Н03Н 3/02. Способ определения пьезомодулей / В. Л. Земляков Опубл. 28.02.1994. Бюл. № 8.
- 10. Земляков В. Л., Ключников С. Н. Определение параметров пьезокерамических элементов по амплитудным измерениям // Измерительная техника. 2010. № 3. С. 38–40.
- 11. Ключников С.Н. Метод определения добротности резонансных систем по амплитудным измерениям и его аппаратная реализация на базе LABVIEW [Электронный ресурс] // Инженерный вестник Дона. 2011. №4. Режим доступа: http://ivdon.ru/magazine/archive/n4y2011/521.
- 12. Земляков В. Л., Ключников С. Н. Определение пьезомодуля материала пьезокерамического элемента. [Электронный ресурс]. Инженерный вестник Дона. 2012. № 2. Режим доступа: (http://ivdon.ru/magazine/archive/n2y2012/803)