Экспериментальные исследования шума кранов на железнодорожном ходу

М.В. Баланова

Ростовский государственный университет путей сообщения, Ростов-на-Дону

Аннотация: В статье рассмотрены данные экспериментальных исследований виброакустических характеристик кранов на железнодорожном ходу. Проведенные исследования помогли выявить идентичные закономерности в спектральном составе шума у кранов на железнодорожном ходу различных моделей, что позволяет разработать общий подход к моделированию виброакустической динамики этих узлов.

Ключевые слова: краны на железнодорожном ходу, условия труда, вредные и опасные производственные факторы.

Железнодорожные краны широко применяются при погрузочноразгрузочных и сортировочных работах на железнодорожных станциях и переездах, а также во время аварийно-восстановительных работ. В зависимости от выполняемых работ используют различные краны на железнодорожном ходу КЖ, ЕДК, Сокол, ДГКу и другие[10].

Железнодорожные краны состоят из поворотной платформы (с портальной рамой, силовой установкой, крановыми механизмами, приборами, кабиной); ходовой части (специальной платформы с выносными опорами, опирающейся на две железнодорожные тележки нормальной колеи), опорноповоротного устройства и рабочего оборудования крана[9]. В собранном виде они вписываются в железнодорожный габарит и на дальние расстояния транспортируются в составе поезда со скоростью до 100 км/ч. В пределах строительных площадок краны передвигаются самоходом со скоростью до 20 км/ч и могут служить также тягачами для передвижения железнодорожных платформ со строительными грузами к местам разгрузки [3].

В качестве силовых установок кранов обычно применяются дизельные и дизель-электрические одно- и многомоторные приводы, а также паросиловые установки.

Анализ виброакустических характеристик выполнен на примере крана КЖ-1572А, который оснащен кабиной с поворотным механизмом.

Рис.1 Кран КЖ-1572А

Кран железнодорожный дизель-электрический КЖ-1572A оснащен кабиной с большой площадью остекления, которая составляет 55 % общей площади кабины[5].

Рис . 2 Кабина крана КЖ-1572А

Результаты измерений виброакустических факторов на рабочих местах машинистов крана КЖ-1572A и ДГКу приведены в табл.1, 2

Таблица 1 - Уровни шума на рабочих местах машинистов кранов железнодорожных КЖ-1572A

Место		Среднегеометрические полосы частот, Гц								
измерения, условия	31,5	63	125	250	500	1000	2000	4000	8000	дБА
ПДУ	95	95	87	81	78	75	73	71	69	80
кабина управления	85	103	88	85	90	86	82	77	78	80
на площадке у двигателя	107	111	110	104	105	104	105	96	90	82

Таблица 2 - Уровни шума на рабочих местах машинистов кранов железнодорожных ДГКу

Место	Среднегеометрические полосы частот, Гц									
измерения, условия	31,5	63	125	250	500	1000	2000	4000	8000	дБА
ПДУ	95	95	87	81	78	75	73	71	69	80
транспортный режим	96	96	88	85	82	82	76	74	68	86
технологический режим	95	92	90	88	83	80	74	71	61	84

Как видно из полученных данных виброакустические характеристики данных машин значительно превышают предельно-допустимые величины.

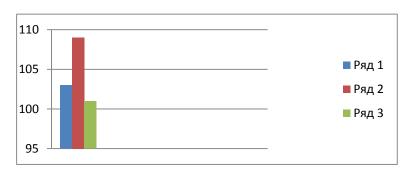


Рис.3 Гистограмма величин уровней шума в различных точках кабины крана: 1-на рабочем месте машиниста крана, 2 - возле задней стенки; 3 – возле стекла

Исходя их представленной на рис.3 гистограммы следует, что в кабине крана выделяются зоны с различным уровнем шума. Максимальные значения уровней звука зафиксировано в кабине крана около задней стенки кабины, где находится сидение машиниста в данной зоне величина уровня на 25 дБА превышает санитарные нормы. Следует отметить, что данное превышение шума зафиксировано, как при в процессе работы крана по перемещению груза, так и при работе двигателя крана на холостом ходу. Уровни звука возле передней стенки меньше, но также превышают предельно-допустимое значение на 5-9 дБА.

Измерения уровней ЗВУКОВОГО двигателей давления, внутреннего сгорания, кранов производились В условиях свободного воздушного пространства при работе крана на холостом ходу. Измерения выполнены в сухую погоду при скорости движения воздуха не более 4 м/с. При скорости движения ветра превышающих 1м/с на микрофон устанавливают специальные ветрозащитный колпачок. Магнитные поля, температура воздуха, атмосферное давление находились в пределах, определенных условиям измерений используемой аппаратуры. На участке измерений акустическая окружающая среда обеспечивала свободное распределение звуковой энергии в пределах 1дБА, т.е. при удвоении расстояния от источника шума уровни звукового давления уменьшаются на 4-5 дБ. Вблизи микрофона отсутствовали предметы, нарушающие свободное звуковое поле.

Измерения уровней звукового давления двигателей внутреннего сгорания приведены на рис.4. соответствуют наиболее шумоактивным условиям работы.

Результаты измерений в кабине крана позволяют предположить, что звуковое излучение двигателя внутреннего сгорания оказывает влияние на формирование звукового поля в кабине машиниста крана.

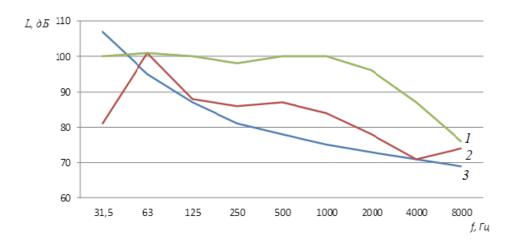


Рис.4 Спектры шума в кабине крана КЖ-1572А: 1 — рабочее место машиниста крана; 2 — общий шум кабины; 3- ПДУ

Представленные на рисунке 4 спектры шума позволяют увидеть на сколько уровни шума превышают санитарные нормы. Следует отметить, что уровни звукового давления на рабочем месте машиниста крана в пятой - седьмой октавах превышают предельно - допустимые величины на 30-34дБ, в диапазоне 500-2000 Гц уровень шума снижается на 17-22 дБ, но все ровно выше предельно-допустимые уровней[5-9].

Анализ закономерностей спектрального состава акустических характеристик позволяет предположить, что формирование звукового поля создается одновременным воздействием воздушной и структурной составляющей шума. Отметим, что воздушной составляющей шума следует учитывать не только внешние, но и внутренние источники, к которым у железнодорожных кранов следует отнести преобразователи и кондиционеры.

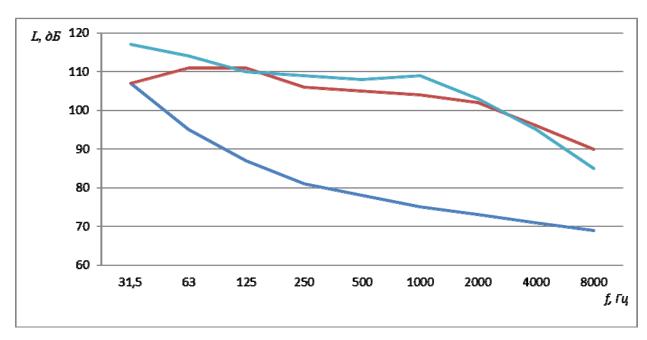


Рис.5 Спектры шума от двигателя крана в машинном отделении: 1 — возле двигателя; 2 — возле кабины; 3- ПДУ

Уровни звукового давления в машинном отделении превышают предельно-допустимые величины в широкой полосе частот. Следует отметить существенное влияние виброакустических характеристик силовой установки. Действительно, уровни ЗВУКОВОГО давления максимально превышают 34 дБ шестой нормативные значения на октаве, т.е. средневысокочастотном интервале частот 1000 Гц [5].

Уровни звукового давления превышают нормативные величины на 30-34 дБ в интервале частот 500-2000ГЦ, т.е. в 5-7 октавах. Максимальное значение уровня звукового давления 108 дБ зафиксировано в шестой октаве [5-8].

Выше представленные исследования показали, что из всех опасных и вредных производственных факторов, которые присутствуют на данных рабочих местах только уровни шума и вибрации превышают санитарные нормы. Причем по степени вредности воздействия шума на здоровье машиниста крана намного опаснее, чем вибрация. Повышенные уровни шума в кабинах машинистов создаются даже только при работе двигателя. При

работе уровни звукового давления достигают значений 110дБ и превышает предельно-допустимые величины на 34дБ.

Литература

- 1. Иванов, Н.И. Основы виброакустики СПб.: Политехника, 2000. 482 с.
- 2. И.А. Яицков, Т.А. Финоченко, А.Н. Чукарин. Идентификация производственных факторов, влияющих на условия труда работников локомотивных бригад тепловозов и мотовозов // Инженерный вестник Дона, 2017, №4 URL: ivdon.ru/ru/ magazine/archive/n4y2017/4438/.
- 3. П. 3. Петухов, Г. П. Ксюнин, Л. Г. Серлин Специальные краны М: Машиностроение, 1985, 248с.
- 4. Финоченко Т.А. Специальная оценка условий труда: методическое пособие для членов комиссий предприятий по проведению специальной оценки условий труда. И.Г. Переверзев, В.А. Финоченко, Т.А. Финоченко. Ростов н/Д, 2016. 83 с.
- 5. Е.Б. Смирнов, А.Н.Чукарин, И.В. Богуславский. Экспериментальные исследования виброакустических характеристик в кабинах крана // Инженерный вестник Дона, 2009, №4 URL: ivdon.ru/ru/magazine/archive/n4y2009/156/.
- 6. С.Л. Пушенко, Н.Ю. Волкова. Способы и средства снижения шумовых нагрузок на предприятиях стройиндустрии // Инженерный вестник Дона, 2012, №4 URL: ivdon.ru/ru/ magazine/archive/ n4p2y2012/1310.
- 7. ILO standards on occupational safety and health. Promoting a safe and healthy working environment. International Labour Conference. Geneva, Switzerland, 2009, 162 p.
- 8. A. Bastgen, C.L. Holzner Employment protection and the market for innovations. Labour Economics, Vol. 46, June 2017, pp. 77-93

- 9. Политика ОАО «Российские железные дороги» в области охраны труда, защиты окружающей среды и промышленной безопасности (одобрена решением правления ОАО «РЖД» от 10.10.2008 г., протокол №34, с изм. от 27.12.2011 № 52 и от 25.11.2013 № 39) ОАО "РЖД". URL: doc.rzd.ru /doc /public.
- 10. Железнодорожный кран. Железнодорожный транспорт: Энциклопедия. Гл. ред. Н. С. Конарев. М.: Большая Российская энциклопедия, 1994. С. 138.

References

- 1. Ivanov N. I. Osnovy vibroakustiki [The basics vibroacoustic]. SPb. Polytechnic, 2000. 482 p
- 2. I.A. Yaitskov, T.A. Finochenko, A.N. Chukarin Inženernyj vestnik Dona (Rus), 2017, №4. URL: ivdon.ru/ru/ magazine/archive/n4y2017/4438/.
- 3. P.Z. Petukhov, G.P. Ksyunin, L.G. Serlin . Special cranes [Special cranes]. M: Mechanical Engineering, 1985, 248p.
- 4. T.A. Finochenko, Special'naja ocenka uslovij truda: metodicheskoe posobie dlja chlenov komissij predprijatij po provedeniju special'noj ocenki uslovij truda (Special assessment of working conditions: Handbook for members of committees of the companies on the special evaluation of working conditions). I.G. Pereverzev, V.A. Finochenko, T.A. Finochenko, Rostov n/D, 2016, 83 p.
- 5. E.B. Smirnov, A.N. Chukarin, I.V. Boguslavsky. Inženernyj vestnik Dona (Rus), 2009, №4. URL: ivdon.ru/magazine/archive/n4y2009/156/.
- 6. S.L. Pushenko, N.Yu. Volkova. Inženernyj vestnik Dona (Rus), 2012, №4. URL: ivdon.ru/magazine/ n4p2y2012/1310.
- 7. ILO standards on occupational safety and health. Promoting a safe and healthy working environment. International Labour Conference. Geneva, Switzerland, 2009, 162 p.

- 8. A. Bastgen, C.L. Holzner Employment protection and the market for innovations. Labour Economics, Vol. 46, June 2017, pp. 77-93.
- 9. Politika OAO «Rossijskie zheleznye dorogi» v oblasti ohrany truda, zashchity okruzhayushchej sredy i promyshlennoj bezopasnosti (odobrena resheniem pravleniya OAO «RZD» [The policy of JSC Russian Railways in the field of labor protection, environmental protection and industrial safety (approved by the decision of the Board of JSCo «Russian Railways»] of 10.10.2008, Minutes No. 34, as amended on 27.12.2011 No. 52 and dated 11.25.2013 No. 39) JSC Russian Railways. URL: doc.rzd.ru/doc/public.
- 10. ZHeleznodorozhnyj kran [Railway crane]. Railway transport: Encyclopedia Ch. Ed. N. S. Konarev. Moscow: The Great Russian Encyclopedia, 1994. P. 138.