Автоматизация измерений параметров шероховатости поверхности

О.Б. Бавыкин, Е.В. Кривозубова

Московский Политех, Москва

Аннотация: В статье предложена методика определения геометрических параметров шероховатости поверхности с применением компьютерной программы Gwyddion и планшетного сканера Canon Lide 220. По написанной методике исследованы образцы шероховатости поверхности. Анализ полученных результатов показал низкие значения абсолютной погрешности измерения параметров шероховатости.

Ключевые слова: образцы шероховатости, шероховатость поверхности, сканирующая зондовая микроскопия, Gwyddion, планшетный сканер.

Известно, что качество поверхности материала — это комплексная характеристика, включающая в себя ряд свойств: усталостная прочность, износоустойчивость, коррозионная стойкость и др.

Качество поверхности оценивают физическими и геометрическими характеристиками. Последние вычисляются при анализе шероховатости поверхности и определены нормативными документами: ГОСТ 2789-73; ISO 4287:1997; ISO 13565-1:1996; ISO 13565-2:1996 и др.

Условно можно разбить все традиционные методы измерения параметров шероховатости на 4 группы:

- визуальный способ;
- бесконтактный способ с применением оптических средств измерительной техники;
 - контактный метод;
- метод, в основу которого лежит применение электронных микроскопов.

В работе [1] подробно рассмотрены все перечисленные выше методы и, на основе проведенного их анализа, сформулированы недостатки каждого метода.

К современным методам изучения топографии поверхности можно отнести сканирующую зондовую микроскопию (СЗМ) [2-3]. Этот метод предоставляет широкие возможности по анализу (в том числе и по фрактальному анализу [4-5]) поверхностного слоя материала в нанометровом диапазоне. Однако, в силу своих особенностей [6], СЗМ малопригодна для технических измерений, и используется в основном в научных исследованиях и в измерениях повышенной точности.

В последнее время активно развивается подход к измерению параметров шероховатости с использованием компьютерных программ. Так, например, авторы работы [7] предлагают для оценки качества поверхности материала использовать планшетный сканер и программное обеспечение для математических вычислений MathCad [8]. Дальнейшим развитием подхода, предложенного в упомянутой выше работе, может быть применение компьютерной программы, предназначенной для математической обработки графических файлов (рис. 1).

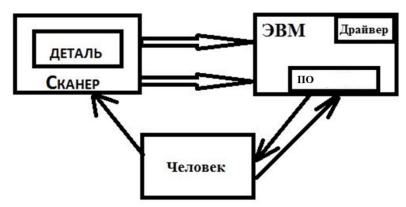


Рис. 1. - Схема измерения параметров шероховатости поверхности с применением планшетного сканера и программного обеспечения

В качестве простого и удобного программного обеспечения предлагается использование специализированной компьютерной программы Gwyddion [9]. Данное программное обеспечение распространяется бесплатно и предназначено для работы с СЗМ. При этом стоит отметь, что в программу

можно загрузить не только файлы, полученные со сканирующего зондового микроскопа, но и графические файлы популярных форматов: *.bmp, *.tif, *.jpg. Кроме того, программа работает без подключенного к компьютеру СЗМ и позволяет рассчитать, как отечественные параметры шероховатости так и зарубежные.

Для реализации предлагаемой схемы (рис.1) разработана методика измерения параметров шероховатости. Она основана на совместном применении компьютерной программы Gwyddion и планшетного сканера (модель Canon Lide 220).

Методика состоит из следующих этапов:

- 1. Базирование детали на сканере.
- 2. Запуск процесса сканирования поверхности детали с последующим сохранением полученного изображения на компьютере.
 - 3. Анализ графических данных в программе Gwyddion.
- 3.1. Загрузка исследуемого изображения (Файл→Открыть (выбор анализируемого изображения);
- 3.2. Внесение в специальном окне программы Gwyddion линейных размеров цифрового изображения (по умолчанию сканер сканирует все поле формата A4);
- 3.3. Вычисление на компьютере геометрических параметров шероховатости через команду «Рассчитать параметры шероховатости».

По предложенной методике были исследованы образцы шероховатости (рис. 2), изготовленные в соответствие с требованиями документов ГОСТ 9378-93 и ГОСТ 2789-59.

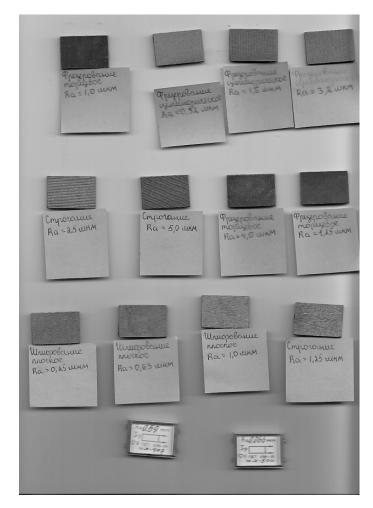


Рис. 2. – Скан исследуемых образцов

Таблица 1 содержит результаты измерений параметров шероховатости поверхности образцов.

Таблица №1 Результаты измерений параметров шероховатости поверхности образцов

Метод обработки поверхности образца	Нормируемое значение параметра Ra (мкм)	Вычисленное значение параметра Ra (мкм)	Абсолютная погрешность (Δ)
Фрезерование торцевое	1,25	1,236	0,014
Фрезерование цилиндрическое	0,32	0,334	-0,014
Фрезерование торцевое	1,0	1,100	-0,1
Фрезерование цилиндрическое	1,6	1,587	0,013
Фрезерование торцевое	3,2	3,367	-0,167
Фрезерование цилиндрическое	3,2	3,158	0,042
Шлифование плоское	1,0	1,123	0,123
Шлифование плоское	0,63	0,660	-0,03

Шлифование плоское	0,25	0,249	0,001
Строгание	5,0	5,123	-0,123
Строгание	1,25	1,246	0,004
Строгание	2,5	2,578	-0,078
Образец шероховатости по ГОСТ	0,59	0,161	0,429
2789-59			
Образец шероховатости по ГОСТ	0,066	0,182	0,478
2789-59			

Анализируя полученные результаты можно сделать следующие выводы:

- для образцов шероховатости, изготовленных в соответствие с требованиями нормативного документа ГОСТ 9378-93, значение абсолютной погрешности [10] варьируется от -0,03 до 0,014 мкм. Данный результат позволяет использовать предлагаемый метод для измерения параметров шероховатости поверхности из различных металлов;
- абсолютная погрешность измерения параметров шероховатости образцов из стекла (по по ГОСТ 2789-59) почти на порядок больше по сравнению с аналогичным параметром для образцов из металла. Это объясняется невозможностью сканером получить изображения неровностей на стекле.

Предлагаемая методика может использоваться в лабораторных измерениях при отсутствии специализированных средств измерительной техники, а также в учебном процессе при проведении лабораторных и практических занятиях.

В перспективе планируется провести исследование влияния режимов работы сканера (разрешение сканирования, цветность и т.д.) на точность измерения параметров шероховатости. На данный момент можно выдвинуть следующие рабочие гипотезы:

- при черно-белом сканировании в любых разрешениях вычислить адекватные значения параметров шероховатости не получится. Это

объясняется тем, что при сканировании в монохромном режиме теряется большая часть графической информации;

- сканирование в градациях серого и в цвете будут давать примерно одинаковые результаты, точность которых будет расти до определенного разрешения.

Литература

- 1. Бавыкин О.Б., Вячеславова О.Ф. Модернизация микроинтерферометра МИИ-4 // Известия Московского государственного технического университета МАМИ. 2013. Т. 2. № 2 (16). С. 290-293.
- 2. Вячеславова О.Ф., Бавыкин О.Б., Ткаченко И.О. Современные методы исследования поверхности с использованием программы "NOVA". Критерии и цели // М.: Московский государственный машиностроительный университет (МАМИ), 2012. 44 с.
- 3. Бавыкин О.Б. Применение в образовании специализированных компьютерных программ «NOVA» и «MYTESTX» // IDO Science, 2011. №1. С. 10-11.
 - 4. Feder J. Fractals // N.Y.: Plenum Pub. Corp., 1988. P. 310
- 5. Бавыкин О.Б. Исследование точности фрактальной обработки данных в компьютерной программе Fractan // Инженерный вестник Дона, 2017, № 2. URL: ivdon.ru/uploads/article/pdf/IVD_108_bavykin.pdf_99b786585e.pdf
- 6. Потапов А.А., Вячеславова О.Ф., Бавыкин О.Б. Параметрическая методика определения наличия фрактальных свойств у электрохимически обработанных поверхностей // Нелинейный мир. 2014. Т. 12. № 3. С. 3-12.
- 7. Яковлев А.В., Миловзоров А.Н. Оценка результатов в системе автоматизированного анализа шероховатости поверхности // Межвузовский сборник научных трудов МИ ВлГУ. 2001. №5. С.42-44.
- 8. Орешин Г.Ю., Начарова А.Н. Решение задачи строительной механики по расчету трехшарнирной, вертикально нагруженной арки параболического

- абриса в вычислительной среде Mathcad // Инженерный вестник Дона, 2019. № 1. URL: ivdon.ru/uploads/article/pdf/IVD 164 oreshin N.pdf 086e9b174d.pdf
- 9. Gwyddion Free SPM (AFM, SNOM/NSOM, STM, MFM) data analysis software. URL: gwyddion.net.
- 10. Placko, D., 2006. Metrology in Industry. The Key for Quality. French College of Metrology, pp: 38-39.

References

- 1. Vyacheslavova O.F., Bavykin O.B. Izvestiya Moskovskogo gosudarstvennogo tekhnicheskogo universiteta MAMI. 2013. T. 2. № 2 (16). pp. 290-293.
- 2. Vyacheslavova O.F., Bavykin O.B., Tkachenko I.O. Sovremennye metodyissledovaniya poverkhnosti s ispol'zovaniem programmy "NOVA". Kriterii i tseli [Modern methods of surface research using the "NOVA" program. Criteria and objectives] M.: MSTU, 2012. 44 p
 - 3. Bavykin O.B. IDO Science. 2011. № 1. pp. 10-11.
 - 4. Feder J. Fractals. N.Y.: Plenum Pub. Corp., 1988. P. 310.
- 5. Bavykin O.B. Inženernyj vestnik Dona (Rus), 2017, № 2. URL: ivdon.ru/uploads/article/pdf/IVD 108 bavykin.pdf 99b786585e.pdf
- 6. Potapov A.A., Vyacheslavova O.F., Bavykin O.B. Nelineynyy mir. 2014. T. 12. № 3. pp. 3-12.
- 7. Yakovlev A.V., Milovzorov A.N. Mezhvuzovskij sbornik nauchnyh trudov MI VlGU. 2001. №5. pp.42-44.
- 8. Oreshin G.YU., Nacharova A.N. Inženernyj vestnik Dona (Rus), 2019, № 1. URL: ivdon.ru/uploads/article/pdf/IVD 164 oreshin N.pdf 086e9b174d.pdf
- 9. Gwyddion Free SPM (AFM, SNOM/NSOM, STM, MFM) data analysis software. URL: gwyddion.net
- 10. Placko, D., 2006. Metrology in Industry. The Key for Quality. French College of Metrology, pp: 38-39.