Эконометрические методы управления портфелем ценных бумаг

А. О. Побойкина, Л. Н. Клянина

Академия строительства и архитектуры Донского государственного технического университета

Аннотация: В статье рассматривается актуальная для развивающейся экономики задача формирования и управления портфелем ценных бумаг. Для ее решения применяется активная стратегия, которая подразумевает изменения структуры портфеля. Доли активов включаются в портфель по методу «Квази — Шарпа». Модель используется на неустойчивых фондовых рынках для эффективной работы. Исследования проводятся на примере дивидендов крупных иностранных компаний Модель «Квази — Шарпа» соединяет доходность ценной бумаги с доходностью единичного портфеля и риском этой ценной бумаги с помощью функции линейной регрессии. Риск в данном методе измеряется с помощью коэффициента бета β, который характеризуется степенью чувствительности к изменению доходности единичного портфеля. С помощью пакета «Анализ данных» находятся уравнения регрессии, позволяющие строить прогноз на будущие периоды времени.

Ключевые слова: эффективный портфель, портфельная теория, ожидаемый доход, доходность, заданный риск, инвестиции, ценные бумаги, линия тренда, прогнозирование, модель Квази — Шарпа.

Статья посвящена актуальной для развивающейся экономики проблеме формирования и управления портфелем ценных бумаг. Кризис 2008 года и последовавший за ним период стагнации в экономике России показали, что необходимо не только приобретать акции, но и эффективно ими управлять.

Сущность портфельного инвестирования подразумевает распределение инвестиционного потенциала между различными группами активов. В зависимости от того, какие цели и задачи первоначально стоят при создании того или иного портфеля, берется определенное процентное соотношение между различными типами активов, формирующими портфель инвестора. Главная задача инвестора учесть потребности и составить портфель активов, включающий в себя разумный риск и приемлемую доходность [1–3].

Проведем исследованиена примере дивидендов по акциям за период 01.05.2017 по 01.02.2018 таких крупных компаний как AppleInc (AAPL), Microsoft (MSFT), IntelCorporation (INTC), NVIDIA Corporation (NVDA), IBM

(<u>https://ru.investing.com</u>) [4]. С помощью ППП Ехсеlнайдем прогноз дивидендов по каждой компании.

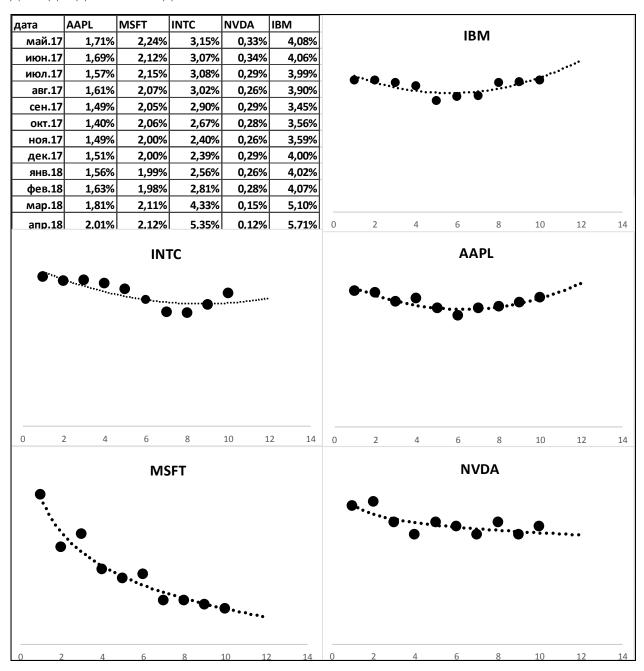


Рис. 1. – Линии тренда и результаты прогноза

Применим эконометрические методы, и найдем уравнения регрессии наилучшим образом характеризующие числовые данные для каждой компании (таблица №1). Построим прогноз для каждого актива. Результаты исследований приведены на рис. 1. В двенадцатой строке находятся значения

прогнозируемых дивидендов на март для каждой компании, а в тринадцатой на апрель.

Найденная оценка уравнения регрессия для всех компаний статически значима, поскольку фактическое значение F больше табличного значения Фишера.

Таблица № 1 Уравнения регрессии

	Уравнение регрессии	r^2	F - статистика	Вывод
AAPL	$y = 0.00001x^2 - 0.0012x + 0.0186$	0,8098	21,32	Значим
MSFT	$y = 0.0223x^{-0.0524}$	0,9371	78,33	Значим
INTC	$y = 0.0001x^2 - 0.002x + 0.0346$	0,7044	11,67	Значим
NVDA	$y = 0.0033x^{-0.098}$	0,5825	9,71	Значим
IBM	$y = 0.0002x^2 - 0.0028x + 0.0446$	0,6276	8,51	Значим

Прогнозные значения будут использованы для нахождения эффективного портфеля ценных бумаг. Для этого воспользуемся моделью Г.Марковица и У. Шарпа [5]. Модель «Квази — Шарпа», используется на неустойчивых фондовых рынках для эффективной работы. Эта модель основана на взаимосвязи доходности каждой ценной бумаги из всего множества 5 ценных бумаг с доходностью единичного портфеля[6].

Модель «Квази — Шарпа» соединяет доходность ценной бумаги с доходностью единичного портфеля и риском этой ценной бумаги с помощью функции линейной регрессии. Формула доходности ценной бумаги:

$$r_t = \bar{r}_t + \beta_t (r_{sp} - \bar{r}_{sp}),$$

 r_i –доходность i –тойценной бумаги;

 r_{sp} — доходность единичного портфеля;

 $m{\beta}_i$ — коэффициент чувствительности к изменению доходности акций по отношению к изменению доходности рынка;

 \bar{r}_{i} –средняя доходность i –той ценной бумаги;

 \bar{r}_{sp} – средняя доходность единичного портфеля.

Риск в данном методе измеряется с помощью коэффициента β, который позволяет сравнивать между собой акции различных компаний по их риску. Может быть рассчитан для всего инвестиционного портфеля в целом. Чем ниже коэффициент бета, тем меньше изменяется доходность ценной бумаги от колебания доходности единичного портфеля [7].

В модели «Квази – Шарпа» риск ценной бумаги представляет собой совокупность коэффициента β и остаточного риска.

Доходность портфеля находят по формуле:

$$r_p = \sum_{i=1}^N (\bar{r}_i \cdot w_i) + (r_{sp} - \bar{r}_{sp}) \cdot \sum_{i=1}^N (\beta_i \cdot w_i),$$

По модели Марковица и Шарпа формула, где максимизирует доходность инвестиционного портфеля и устанавливается уровень риска, выглядит как:

$$\begin{cases} \sum_{i=1}^{5} (\bar{r}_i \cdot w_i) + (r_{sp} - \bar{r}_{sp}) \cdot \sum_{i=1}^{5} (\beta_i \cdot w_i) \rightarrow max; \\ \sqrt{\sum_{i=1}^{5} (\beta_i \cdot w_i)^2 \cdot \sigma_{sp}^2 + \sum_{i=1}^{5} (\sigma_r^2 \cdot w_t^2)} \leq \sigma_{rq}; \\ w_i \geq 0; \\ \sum w_i = 1. \end{cases}$$

Где минимизируем общий риск инвестиционного портфеля с фиксированным уровнем доходности, имеет следующий вид:

$$\begin{cases} \sum_{i=1}^{5} (\bar{r}_{i} \cdot w_{i}) + (r_{sp} - \bar{r}_{sp}) \cdot \sum_{i=1}^{5} (\beta_{i} \cdot w_{i}) \geq r_{rq}; \\ \sqrt{\sum_{i=1}^{5} (\beta_{i} \cdot w_{i})^{2} \cdot \sigma_{sp}^{2}} + \sum_{i=1}^{5} (\sigma_{r}^{2} \cdot w_{i}^{2}) \rightarrow min_{i}; \\ w_{i} \geq 0; \\ \sum w_{i} = 1. \end{cases}$$

Доходности акций находят по формуле:

$$r_i = \frac{p_i - p_{i-1}}{p_{i-1}}$$

 r_i — доходность акциив i — **тый**период времени;

 p_i – дивиденд поакциив i – **тый**период времени;

 p_{i-1} — дивиденд по акции в прошедшем периоде.

В таблице №2приведены расчеты доходности по акциям, а также доходность единичного портфеля.

Теперь для каждой акции рассчитаем среднее значение доходности за все 12 месяцев (таблица №2). Формула для расчета [7]:

$$\bar{r}_t = \sum_{t=1}^{12} r_t^t / 12,$$

 r_i^t – доходность і-ой акции за период Т;

Доходность единично портфеля (ЕП)это доходность составленного из используемых акций в равных пропорциях и рассчитывается по формуле:

$$r_{sp}^t - \sum_{t=1}^5 r_i^t / 5,$$

 T_{sp}^{t} — доходность единичного портфеля;

Средняя доходность единичного портфеля за все периоды рассчитывается по формуле:

$$\bar{r}_{sp} = \sum_{t=1}^{12} r_{sp}^t / 12,$$

 r_{sp} — средняя доходность единичного портфеля;

 r_{sp}^t — доходность единичного портфеля.

Таблица № 2 Расчет доходности единичного портфеля

AAPL	MSFT	INTC	NVDA	IBM		Доходность					
1,71%	2,24%	3,15%	0,33%	4,08%	AAPL	MSFT	INTC	NVDA	IBM		
1,69%	2,12%	3,07%	0,34%	4,06%	-0,0117	-0,054	-0,0254	0,0303	-0,0049	-0,0131	
1,57%	2,15%	3,08%	0,29%	3,99%	-0,071	0,014	0,0033	-0,1471	-0,0172	-0,0436	
1,61%	2,07%	3,02%	0,26%	3,90%	0,0255	-0,037	-0,0195	-0,1035	-0,0226	-0,0314	
1,49%	2,05%	2,90%	0,29%	3,45%	-0,0745	-0,001	-0,0397	0,1154	-0,1154	-0,0248	
1,40%	2,06%	2,67%	0,28%	3,56%	-0,0604	0,005	-0,0793	-0,0345	0,0319	-0,0275	
1,49%	2,00%	2,40%	0,26%	3,59%	0,0643	-0,0291	-0,1011	-0,0714	0,0084	-0,0258	
1,51%	2,00%	2,39%	0,29%	4,00%	0,0134	0	-0,0042	0,1154	0,1142	0,0478	
1,56%	1,99%	2,56%	0,26%	4,02%	0,0331	-0,005	0,0711	-0,1035	0,005	0,0002	
1,63%	1,98%	2,81%	0,28%	4,07%	0,0449	-0,005	0,0977	0,07692	0,0124	0,0454	
1,81%	2,11%	4,33%	0,15%	5,10%	0,1128	0,0655	0,5402	-0,4721	0,2533	0,1	
2,01%	2,12%	5,35%	0,12%	5,71%	0,1080	0,0037	0,2371	-0,1854	0,1198	0,0566	
		Средня	я доходность 0,0168 -0,0047 0,0618					-0,0709	0,035		
			Средняя доходность единичного портфеля					0,007614	1937	•	

Рассчитаем чувствительность изменения доходности акции от изменения доходности единичного портфеля коэффициент β по формуле [8]:

$$\beta_{t} = \sum_{t=1}^{12} \left[(r_{t}^{t} - \bar{r}_{t}) \cdot \left(r_{sp}^{t} - \bar{r}_{sp} \right) \right] / \sum_{t=1}^{12} \left(r_{sp}^{t} - \bar{r}_{sp} \right)^{2},$$

Остаточный риск, который показывает степень разброса доходности ценной бумаги относительно линии регрессии, определяетсяформулой:

$$\sigma_{ri} = \sum_{t=1}^{12} (r_i^t - \bar{r}_i - \beta \cdot (r_{sp}^t - \bar{r}_{sp}))^2 / 12,$$

Вычисления в ЕхсеІприведены в таблиц № 3.

Таблица №3 Расчет остаточного риска и риска единичного портфеля

	Числитель						ный рис	к		
	AAPL	MSFT	INTC	NVDA	IBM	AAPL	MSFT	INTC	NVDA	IBM
0,0004	0,0006	0,001	0,0018	-0,0021	0,0008	0,0008	0,0025	0,0077	0,0116	0,0015
0,0026	0,0045	-0,001	0,003	0,0039	0,0027	0,0085	0,0004	0,0036	0,0079	0,0023
0,0015	-0,0003	0,0013	0,0032	0,0013	0,0022	0	0,0011	0,0068	0,0013	0,0029
0,001	0,003	0,0002	0,0033	-0,006	0,0049	0,0089	0	0,0106	0,0422	0,0205
0,0012	0,0027	-0,0003	0,005	-0,0013	0,0001	0,0063	0	0,0205	0,0016	0
0,0011	-0,0016	0,0008	0,0054	0	0,0009	0,0024	0,0006	0,0273	0	0,0006
0,0016	-0,0001	0,0002	-0,0026	0,0075	0,0032	0	0	0,0042	0,0264	0,007
0	-0,0001	0	0	0,0002	0,0002	0,0003	0	0	0,0011	0,0009
0,0014	0,0011	0	0,0014	0,0056	-0,0009	0,0007	0	0,0012	0,0169	0,0006
0,0085	0,0089	0,0065	0,0442	-0,037	0,0202	0,0077	0,0041	0,2125	0,0803	0,0614
0,0024	0,0045	0,0004	0,0086	-0,0056	0,0042	0,0076	0	0,0295	0,0093	0,0083
0,022	0,023	0,009	0,0731	-0,0336	0,0385	0,0039	0,0008	0,0295	0,0181	0,0096
β	0,9573	1	0,393	3,1799	-1,4614	Риск ед	Я	0,0428		

При формировании инвестиционного портфеля из этих акций рассчитаем риск единичного портфеля (таблица №3):

$$\sigma_{sp} = \sqrt{\sum_{t=1}^{12} (r_{sp}^t - \bar{r}_{sp})^2 / 12},$$

Обобщаем все данные в одну таблицу № 4.

Таблица №4

Обобщенные данные по компаниям

Название	Коэффициент в	Средняя доходность	Остаточный риск
AAPL	0,96	1,68%	0,39%

MSFT	1	-0,47%	0,08%
INTC	0,39	6,18%	2,95%
NVDA	3,18	-7,09%	1,81%
IBM	-1,46	3,50%	0,96%

Очевидно, что наивысшее изменение доходности ценной бумаги от колебания доходности единичного портфеля у компании NVDA, а наименьшая зависимость у IBM. Наибольшая средняя доходность компании INTCхарактеризуется большим остаточным риском в сравнение с другими корпорациями.

Для расчета долей в инвестиционном портфеле воспользуемся надстройкой «Поиск решений» в Excel[9]. Необходимо максимизировать доходность инвестиционного портфеля с ограничением на риск. Максимальный риск установим на отметке 3%. Заполнив дополнительные столбцы для расчета доходности и риска (таблица № 5).

Таблица №5 Результаты доли инвестирования в портфель

Название	$\bar{r_i}$	β	σ_i	σ_{sp}	r_{3p}	W	r·w	β·w	$(\beta \cdot w)^2$	$\sigma^2 \cdot w^2$
AAPL	1,68%	0,96	0,39%			0,088	0,002	0,084	0,007	1,18
MSFT	-0,47%	1	0,08%			0	0	0	0	0
INTC	6,18%	0,39	2,95%	4,28%	0,008	0,876	0,054	0,342	0,117	0,001
NVDA	-7,09%	3,18	1,81%			0	0	0	0	0
IBM	3,50%	-1,46	0,96%			0,036	0,001	-0,053	0,003	1,19
					W	1	0,057	0,374	0,127	0,001
Доходность портфеля		5,97%								
Риск портфеля			3%							

В итоге получили следующее соотношений долей акций в портфеле. Доля акций AppleInc (AAPL) составляет 8,8%, доля акций IntelCorporation (INTC) 87,6%, доля акций IBM (IBM) 3,6%. доля акций Microsoft (MSFT) и NVIDIA Corporation (NVDA) составила 0%.

Модель «Квази – Шарпа» удобно использовать при рассмотрении незначительного количества ценных бумаг, которые принадлежат одной

отрасли. С помощью данной модели хорошо поддерживать оптимальную структурууже созданного инвестиционного портфеля [10]. Недостатком этой модели является то, что она хорошо работаетв период стабильного роста национальной экономики, которые влияют на доходность портфеля.

Литература

- 1. Сенников А.С., Клянина Л.Н. Применение эконометрических моделей для формирования эффективных портфелей российских ценных бумаг без ограничения прав продажи // Инженерный вестник Дона. 2016. №2 URL: ivdon.ru/ru/magazine/archive/n2y2016/3641
- 2. Gitman L.J., Joehnk M.D. Fundamentalsofinvesting. Boston: PearsonAddison-Wesley, 2008. 681 p.
- 3. Семенкова Е.В. Операции с ценными бумагами. М.: Перспектива, 2004. 328 с.
- 4. Investing.com: финансовый портал. 2007. URL: ru.investing.com/equities/ (дата обращения: 10.02.2018).
- 5. Килячков А.А., Чалдаева Л.А. Рынок ценных бумаг и биржевое дело. М.: Норма-Юристъ, 2001. 687 с.
- 6. Sharpe W.F., Alexander G.J., Bailey J.V. Investments. 5th edition. PrenticeHall, 1994. 900 p.
- 7. Krebs Y. Consumerportfolio // Forbes. 2007. №9. p. 44 URL:forbes.ru/forbes/issue/2007-09/18327-potrebitelskii-portfel
- 8. Колесов П. Ф. Новый концептуальный подход оценки эффективности инвестиционных операций коммерческих банков с ценными бумагами // Инженерный вестник Дона. 2011. № 3 URL: ivdon.ru/ru/magazine/archive/n3y2011/514
- 9. Формирование инвестиционного портфеля на основе модели «Квази Шарпа» в excel // Школа финансового анализа URL: beintrend.ru/l-r (дата обращения: 09.02.2018).

10. Коссов В.В., Лившиц В.Н., Шахназаров А.Г. Методические рекомендации по оценке эффективности инвестиционных проектов. 2-е изд. М.: Экономика. 2000. 421 с.

References

- 1. Sennikov A.S., Kljanina L.N. Inženernyj vestnik Dona (Rus). 2016. №2 URL: ivdon.ru/ru/magazine/archive/n2y2016/3641
- 2. Gitman L.J., Joehnk M.D. Fundamentals of investing. Boston: Pearson Addison-Wesley, 2008. 681 p.
- 3. Semenkova E.V. Operacii s cennymi bumagami. M.: Perspektiva, 2004. 328 p. [Operations with securities].
- 4. Investing.com: finansovyj portal. 2007. URL: ru.investing.com/equities/ (data obrashhenija: 10.02.2018).
- 5. Kiljachkov A.A., Chaldaeva L.A. Rynok cennyh bumag i birzhevoe delo. M.: Norma-Jurist, 2001. 687 p.
- 6. Sharpe W.F., Alexander G.J., Bailey J.V. Investments. 5th edition. Prentice Hall, 1994. 900 p.
- 7. Krebs Y. Forbes. 2007. №9. p. 44 URL: forbes.ru/forbes/issue/2007-09/18327-potrebitelskii-portfel
- 8. Kolesov P. F. Inženernyj vestnik Dona (Rus). 2011. № 3. URL: ivdon.ru/ru/magazine/archive/n3y2011/514
- 9. Formirovanie investicionnogo portfelja na osnove modeli «Kvazi Sharpa» v excel Shkola finansovogo analiza URL: beintrend.ru/l-r (data obrashhenija: 09.02.2018).
- 10. Kossov V.V., Livshic V.N., Shahnazarov A.G. Metodicheskie rekomendacii po ocenke jeffektivnosti investicionnyh proektov. 2-e izd. M.: Jekonomika. 2000. 421 p. [The Methodical recommendations on assessment of efficiency of investment projects].