Исследование объектов социального назначения по ключевым признакам

Дмитрий Викторович Бурматов, Надежда Дмитриевна Чередниченко Российский университет транспорта – РУТ МИИТ, Москва, Россия

Аннотация: Рассматривается существующая классификация объектов социального назначения на примере зданий школьных учреждений с привязкой к емкости по ученикам и размещению в населенных пунктах различного типа. Определены ключевые внешние и внутренние факторы, влияющие на принятие решения строительной организацией о подписании контракта на строительство школьных учреждений, описана проблематика — недостаточная транспортная доступность, недостаток ресурсной базы, отставание по срокам строительства при реализации проектов социального назначения. Рассмотрено влияние выбранного конструктивного решения, а также климатических условий на сроки реализации проекта.

Ключевые слова: классификация объектов социального назначения, влияние конструктивных решений на сроки реализации объекта строительства, коэффициент транспортной доступности регионов, обеспеченность ресурсной базой, риски финансирования строительных объектов в труднодоступных регионах.

Исследование объектов социального назначения по ключевым признакам

Задачей исследования является необходимость определить, по каким признакам классифицируются объекты социального назначения, а также определить внешние и внутренние факторы, влияющие на принятие решения о подписании контракта на строительство.

Под объектами социального назначения (далее ОСН) понимаются – дошкольные общеобразовательные учреждения (детские сады), школьные общеобразовательные учреждения, больницы, поликлиники, медицинские стационары, фельдшерские пункты, физкультурно-оздоровительные комплексы.

Описание существующих подходов к классификации объектов социального назначения проведем на примере школьных учреждений.

Согласно каталогу КСИ (Классификатор строительной информации), действует крайне упрощенная классификация, которая делит объекты образования на объекты дошкольного и школьного образования без какойлибо дополнительной детализации. На основании приказа Министерства строительства России 10.07.2020 N $374/\pi p$ «Об OT утверждении классификатора объектов капитального строительства по их назначению и функционально-технологическим особенностям» существует следующая классификация объектов школьного образования с утвержденной цифровой кодировкой.

Таблица 1 Классификация объектов школьного образования с кодировкой

Объекты	среднего	Здание средней школы	26.1.1.1
образования			
Объекты	среднего	Здание школы-	26.1.1.3
образования		интерната	
Объекты	среднего	Здание школы с	26.1.1.4
образования		бассейном	
Объекты	среднего	Здание	26.1.1.5
образования		специализированной	
		школы среднего	
		образования	
Объекты	среднего	Здание начальной	26.1.1.8
образования		школы	

Таким образом, существующих данных недостаточно для проведения анализа и определения признаков объектов школьных учреждений. В связи с этим возникла необходимость провести более детальный анализ нормативных документов и обратиться к СНиП 1.04.03-85 «Нормы продолжительности строительства и задела в строительстве предприятий, зданий и сооружений».

Согласно СНИП 1.04.03-85, принимается следующая классификация, увязывающая размерность образовательного учреждения со сроком возведения каркаса здания и устройством ограждающих конструкций относительно выбранного конструктивного решения.

Школы на 132-350 учеников:

Крупнопанельное – 6 месяцев.

Крупноблочное – 6 месяцев.

Кирпичное – 7 месяцев.

Школы на 422-694 учеников:

Крупнопанельное – 8 месяцев.

Крупноблочное – 8 месяцев.

Кирпичное – 9 месяцев.

Отдельное внимание стоит обратить на тот факт, что вариант конструктивного решения в виде металлокаркаса не рассматривается в данных нормативных документах как возможный альтернативный вариант, несмотря на аналогичные требования в части норм проектирования.

Классификация типов школ позволяет понять ключевые внутренние факторы, влияющие на принятие решения — такие, как параметры емкости здания и принятые конструктивные решения. Любой объект попадает под влияние различных факторов, внешних и внутренних, которые характеризуют объект.

Вопрос применения методов факторного анализа при наличии обобщающих показателей рассмотрен в работе «Поддержка принятия управленческих решений при рисках чрезвычайных ситуаций на основе применения методов анализа многомерных статистических данных», а также в статье «Контроллинг в реализации стратегии развития транспортнодорожного комплекса» [1, 2].

В рамках проводимой работы можно выделить ряд обобщающих факторов, которые влияют на принятие решения о строительстве.

Первая группа факторов – внутренние факторы, которые относятся только к характеристикам самого объекта строительства (здания).

Как говорилось ранее, классификация неразрывно связана с внутренними факторами, которые изложены далее.

Факторы, влияющие на первую группу:

- А) Емкость объекта, измеряемая в количестве учеников
- Б) Типы КР: (конструктив может пойти в +, так как его можно изменить под задачи проекта)
 - Монолитный железобетон (максимальная привязка к доступности первичных материалов, БРУ)
 - Сборный железобетон (префабрикация, привязка к ЗЖБИ/ДСК)
 - Стальной каркас (префабрикация, привязка к ЗМК)
 - Крупноблочное строительство (префабрикация, привязка к КПД/ДСК)
 - Модульные конструкции (префабрикация, привязка к заводуизготовителю)

Вторая группа – внешние факторы, относящиеся к характеристикам участка строительства.

Факторы, влияющие на вторую группу показателей:

- Расстояние от базы комплектации (перевалочный хаб строительных материалов, завод по изготовлению металлоконструкций, завод по производству железобетонных изделий, завод по производству крупнопанельных блоков или модульных конструкций, песчаные или щебеночные карьеры)
- Наличие или отсутствие транспортной инфраструктуры
- Климатические условия (ветровые и снеговые нагрузки), которые впоследствии ведут к дополнительным затратам (например, на прогрев бетона при монолитных работах или увеличение сечений несущих элементов при повышенных нагрузках). Здания, выполненные в монолитном железобетонном исполнении с точки зрения конструктивных решений, не берут в работу в ТДР начиная от определенной емкости.
- Обеспеченность ресурсной базой (Все что около 6 или ниже труднодоступные регионы). Затраты на инвестиции в строительство производства несоизмеримы с затратами на строительство объекта.

Рассмотрим подробнее фактор выбранных конструктивных решений по объекту строительства.

Выбранный тип каркаса здания (монолитный железобетон, сборные железобетонные конструкции, крупноблочное строительство, модульный конструктив и так далее) неразрывно связан с необходимостью иметь в доступности завод-изготовитель необходимых конструкций – завод ЖБИ (либо домостроительный комбинат), бетонно-растворная установка строительно-монтажной укомплектованность организации комплектом опалубки, завод по производству модульных зданий и блоков, завод металлоконструкций, а также карьеров и предприятий по производству инертных материалов. Отсутствие заводов в радиусе 250-300 километров ведет к увеличению затрат строительно-монтажной организации транспортно-логистические расходы по доставке необходимых материалов и

конструкций на площадку строительства. Принятые конструктивные решения влияют на последующую комплектацию объекта строительства.

объекта Основная задача комплектации своевременное И полнокомплектное обеспечение строительной площадки всеми необходимыми ресурсами и конструкциями. Ответственность возлагается стороны процесса 3 строительства: структура генподрядная организация, субподрядная организация. В связи с этим возникает необходимость решения задачи координации деятельности сразу трех источников снабжения для синхронизации поступления необходимых материалов и конструкций на строительную площадку.

В условиях максимальной префабрикации процесс снабжения объекта строительства качественно изменяется, превращаясь из поставки первичных материалов и изделий в комплектацию — часть технологического процесса производства строительно-монтажных работ.

Рассмотрим влияние фактора транспортной доступности и наличия необходимой транспортной инфраструктуры

Классификация ТДР

Транспортная доступность (один из таких методов – анализ плотности транспортной сети). Он заключается в определении количества транспортных маршрутов, доступных в определенной местности, и их плотности. Чем больше количество транспортных маршрутов и чем более плотно они расположены, тем выше транспортная доступность в данном районе.)

Транспортная доступность является фактором эффективности хозяйственных связей с точки зрения экономического развития регионов, в том числе и с точки зрения строительства ключевых объектов. Влияние структуры транспортной сети на стоимость грузоперевозок между регионами и инвестиции в развитие регионов описано в работе «Алгоритм Дейкстры и

теория графов, как подход к анализу региональной транспортной системы». [3].

работе А. Махди подробно рассмотрена проблематика, слаборазвитая сеть дорог между регионами напрямую снижает привлекательность инвестиций в отдаленные от городских центров регионы. Подобную зависимость можно отследить и на территории России, особенно с учетом сезонной зависимости и недоступности автосообщения в летний период (например, регионы, где используют так называемые «зимники» для автосообщения). Дополнительно при написании данной статьи были изучены наработки ПО моделированию параметров грузоперевозок работе «Моделирование параметров грузоперевозки на основе бенчмарк-анализа рынка транспортных компаний». На основе данных этой работы был сделан вывод о значительном увеличении стоимости и сложности организации доставки различных видов продукции в ТДР [4].

Транспортная доступность может быть описана гравитационной Иными моделью. величина транспортной доступности словами, пропорциональна населения обратно численности регионов пропорциональна расстоянию между ними (времени в пути). Результаты транспортной регионов Российской расчета показателя доступности Федерации приведены ниже в табличной форме [5].

Выдержка из таблицы о транспортной доступности.

Рис. 1. Регионы с наиболее высоким индексом транспортной доступности

Регион	Транспортная доступность	Ранг	Индекс транспортной доступности: 0 - 1
A	1	2	3
Город федерального значения Москва	30,48	1	1,00
Тверская обл.	18,01	2	0,59
Калужская обл.	17,55	3	0,58
Владимирская обл.	17,47	4	0,57
Рязанская обл.	17,34	5	0,57
Тульская обл.	17,06	6	0,56
Город федерального значения СПетербург	15,11	7	0,50
Нижегородская обл.	14,41	8	0,47
Ярославская обл.	14,31	9	0,47
Ивановская обл.	14,10	10	0,46
Респ. Татарстан	13,90	11	0,46
Воронежская обл.	13.81	12	0.45
Липецкая обл.	13,78	13	0.45
Краснодарский край	13,61	14	0.45
Тамбовская обл.	13,60	15	0,45
Орловская обл.	13,51	16	0.44
Костромская обл.	13,02	17	0.43
Брянская обл.	12,95	18	0.42
Ростовская обл.	12,78	19	0,42
Свердловская обл.	12,62	20	0,41
Респ. Башкортостан	12.45	21	0,41
Курская обл.	12,27	22	0,40
Пензенская обл.	12.23	23	0,40
Самарская обл.	12,15	24	0,40
Респ. Мордовия	12,14	25	0.40
Челябинская обл.	11,79	26	0.39
Ульяновская обл.	11,76	27	0.39
Респ. Чувашия	11,59	28	0,38
Саратовская обл.	11,59	29	0,38
Смоленская обл.	11,53	30	0.38
Новгородская обл.	11,49	31	0.38
Респ. Марий Эл	11.22	32	0.37
Вологодская обл.	11.21	33	0,37
Волгоградская обл.	10.92	34	0,36
Белгородская обл.	10,82	35	0,35
Пермский край	10,74	36	0,35
Респ. Крым и Севастополь	10,68	37	0,35
Удмуртская Респ.	10.55	38	0.35
Ставропольский край	10,05	39	0,33
Новосибирская обл.	9,95	40	0,33
Респ. Дагестан	9,68	41	0,32

Рис. 2. Регионы с наиболее низким индексом транспортной доступности

Респ. Алтай	6,25	66	0,21
Мурманская обл.	5,97	67	0,20
Респ. Хакасия	5,86	68	0,19
Приморский край	5,57	69	0,18
Хабаровский край	5,39	70	0,18
Респ. Бурятия	5,23	71	0,17
Забайкальский край	5,03	72	0,16
Ненецкий АО	4,77	73	0,16
Ямало-Ненецкий АО	4,74	74	0,16
Амурская обл.	4,63	75	0,15
Респ. Тыва	4,50	76	0,15
Респ. Саха (Якутия)	4,32	77	0,14
Еврейская авт. обл.	4,26	78	0,14
Сахалинская обл.	3,61	79	0,12
Камчатский край	3,47	80	0,11
Магаданская обл.	3,40	81	0,11

Таким образом, можно условно обозначить несколько крупных групп:

- регионы с хорошей транспортной доступностью (кф от 30 до 10;
- регионы с ограниченной транспортной доступностью (от 10 до 6,25);
- труднодоступные регионы (от 6,25 и ниже).

Как видно, регионы, которые показывают наиболее существенное отставание по темпам строительства ОСН и невыполнение сроков по федеральной программе по строительству школьных учреждений, находятся исключительно в нижней трети данной таблицы и имеют показатель доступности от 6,25 и ниже. Далее мы будем рассматривать только группу труднодоступных регионов (далее ТДР) с показателем доступности ниже 6,25.

Рассмотрим влияние климатических условий

Снеговые и ветровые нагрузки по ТДР:

Мурманская область – снег V, ветер VI

Республика Хакасия – снег II, ветер III

Приморский край – снег II, ветер III

Хабаровский край – снег III, ветер II

Республика Бурятия – снег I, ветер I

Забайкальский край – снег І, ветер І

Ненецкий AO – снег V, ветер VI

Ямало-Ненецкий AO – снег V, ветер VI

Амурская область – снег II, ветер II

Республика Тыва – снег II, ветер III

Республика Саха (Якутия) – снег II, ветер I

Еврейская автономная область – снег II, ветер II

Сахалинская область – снег VII, ветер VI

Камчатский край – снег VI, ветер V

Магаданская область – снег V, ветер VI

Итого среднее арифметическое значение – снег 3-4, ветер 3-4

Из 15 приведенных ТДР:

Снег V и выше – 6 регионов (40%)

Ветер V и выше – 6 регионов (40%)

Снег I и ветер I - 2 региона (13%)

Таким образом, можно сделать вывод, что почти половина ТДР дополнительно имеет негативные ограничивающие факторы по климатическим условиям (снеговые и ветровые нагрузки). Стоит отметить, что данные показатели влияют не только на расчетные показатели, но также и на производственные (комплектация объекта строительства, монтаж конструкций).

Рассмотрим влияние фактора ресурсной базы

К примеру, Магаданская область представлена горнодобывающей отраслью (золото, серебро, вольфрам, уголь) и рыболовной промышленностью. Промышленные запасы сырья для производства тоже имеются, но нет современных цементных заводов (нет инвестиций в необходимом объеме).

Цементное сырьё 499 млн Т (известняк), 11 (гипс) МЛН Т Керамическое сырьё (кирпичная 37 м3 глина) МЛН Строительный камень 88 м3 МЛН Стекольное сырьё (вулканический пепел) 1,3 МЛН м3 24.5 Торф млн Песчано-гравийная смесь 30 млн м3 + прогнозы 232 млн м3 Больше всего лицензий (35) получено на освоение месторождений песчано-гравийной смеси, на втором месте — строительного камня (14). Не получено ни одной лицензии на работу с месторождениями цементного сырья.

В Амурской области схожая ситуация – золото, уголь, титан, молибден, вольфрам.

Таким образом, на примере Магаданской области можно наблюдать влияние сразу комплекса факторов — ограниченная транспортная доступность, недостаток ресурсной базы, высокие снеговые и ветровые

нагрузки. Проблема сложной транспортной доступности в разрезе значительных географических масштабов российской экономики и, как следствие, возникновение повышенных затрат на логистику прорабатывалась в статье «О приложении ресурсной теории к оценке конкурентных преимуществ региона» [6].

Таблица 2 Чек-лист принятия решения для строительной организации

Факторы	Основная школа	Средняя полная		
		школа		
Емкость (количество	До 450 учеников	До 275 учеников		
учеников)				
Принятый тип	Любой возможный	Монолитный		
конструктивных	вариант	железобетонный		
решений		каркас, кирпичный		
		каркас		
Расстояние от базы	В пределах 250-300 км	Более 300 км		
комплектации				
Транспортная	Хорошая транспортная	Ограниченная		
доступность площадки	доступность,	транспортная		
строительства для	ограниченная	доступность,		
доставки материалов,	транспортная	труднодоступные		
изделий и конструкций	доступность	регионы		
Климатические условия	Ниже V, VI	V, VI		
Обеспеченность	Обеспеченность	Недостаток ресурсной		
ресурсной базой	ресурсной базой	базы		
Область применения	Город	Поселок городского		
		типа, село		

Таким образом, тезис о том, что ТДР зачастую обладают колоссальным инновационно-инвестиционным потенциалом подтверждается не только данными Росстата, но и исследованиями других авторов.

Негативными факторами при принятии решения для данной компании оказались ограниченная транспортная доступность и недостаток ресурсной базы, что приводит к необходимости увеличения затрат на мобилизацию техники, персонала, а также на транспортировку строительных материалов. Минимизация влияния этих факторов требует дальнейшего исследования. Вопрос о снижении финансовых рисков генподрядной организации рассматривался, в частности, в работе «Снижение финансовых рисков строительной организации» Д.А. Шевченко [7].

Кроме τογο, различные риски финансирования проектов строительства упомянуты в работе «Оценка эффективности финансирования строительства в России» за авторством Н.С. Чудновской. В рамках проводимой работы по проблематике строительства ОСН в ТДР наиболее пристальное внимание следует уделить таким рискам, как «строительный риск», то есть, риск превышения тендерными заявками первоначального бюджета стоимости, и «временной риск», то есть, риск отставания от графика ввода объекта в эксплуатацию [8]. Проблематика финансовых рисков строительных проектов широко изучается и освещается в международной практике, с поправкой на региональные особенности. Например, в работе Хемы Саез о рисках строительства в Африке [9]. Риски возникновения форсмажорных обстоятельств (в первую очередь, угроза возникновения военного конфликта) были подробно изложены в работе А. Шибани и Д. Хасана [10].

Компенсирующей мерой может стать обеспечение объектов строительства материалами и изделиями путем централизованной доставки их в сборных комплектах на строительную площадку в соответствии с утвержденными графиками и технологией производства работ.

Анализ рынка показывает, что школы емкостью 275 учеников и ниже (40-80, до 108 учеников согласно СНИП) не берут в работу в ТДР, так как они территориально располагаются в поселках городского типа, поселках, селах. В ТДР данные типы населенных пунктов находятся вне удобной логистики, но одновременно с этим данные здания имеют высокое социальное значение. Поиск решений по повышению привлекательности таких объектов для строительных компаний требует изучения внутренних и внешних факторов, которые влияют на принятие решения о заключении контракта на строительство.

Литература

- 1. Лабинский А.Ю., Бородушко И.В., Таранцев А.А. Поддержка принятия управленческих решений при рисках чрезвычайных ситуаций на основе применения методов анализа многомерных статистических данных. Инженерный вестник Дона, 2023, №10. URL: ivdon.ru/ru/magazine/archive/n10y2023/8745
- 2. Сербиновский Б.Ю., Чефранова О.В. Контроллинг в реализации стратегии развития транспортно-дорожного комплекса. Инженерный вестник Дона, 2012, №2. URL: ivdon.ru/ru/magazine/archive/n2y2012/774
- 3. Алсус М.М. Алгоритм Дейкстры и теория графов, как подход к анализу региональной транспортной системы. Инженерный вестник Дона, 2023, №9. URL: ivdon.ru/ru/magazine/archive/n9y2023/8667
- 4. Гончаренко С.Н., Алмунтафеки А.Ф.М. Моделирование параметров грузоперевозки на основе бенчмарк-анализа рынка транспортных компаний. Инженерный вестник Дона, 2024, №3. URL: ivdon.ru/ru/magazine/archive/n3y2024/9063

- 5. Лавриненко П.А, Ромашина А.А., Степанов П.С., Чистяков П.А. Транспортная доступность как индикатор развития региона. URL: ecfor.ru/wp-content/uploads/2019/11/transportnaya-dostupnost-kak-indikator-razvitiya-regiona.pdf
- 6. Рудаков М.Н., Шегельман И.Р. О приложении ресурсной теории к оценке конкурентных преимуществ региона // Инженерный вестник Дона, 2014, №1. URL: ivdon.ru/ru/magazine/archive/n1y2014/2232
- 7. Шевченко Д.А. Снижение финансовых рисков строительной организации // Инженерный вестник Дона, 2014, №1. URL: ivdon.ru/ru/magazine/archive/n1y2014/2254
- 8. Чудновская Н.С. Оценка эффективности финансирования строительства в России // Инженерный вестник Дона, 2013, №4. URL: ivdon.ru/ru/magazine/archive/n4y2013/2042
- 9. Saez G., Rodriguez-Lopez A., Financial risks in construction projects African journal of business management, 2011, №5. URL: researchgate.net/publication/266229691_Financial_risks_in_construction_projects
- 10. Shibani A., Hasan D., Saaifan J., Sabboubeh H., Eltaip M., Saidani M., Gherbal N. Financial risk management in the construction process, Journal of King Saud University. Engineering sciences, 2022. URL: sciencedirect.com/science/article/pii/S1018363922000435

References

- 1. Labinskij A.Yu., Borodushko I.V., Tarancev A.A. Inzhenernyj vestnik Dona, 2023, №10. URL: ivdon.ru/ru/magazine/archive/n10y2023/8745
- 2. Serbinovskij B.Yu., Chefranova O.V. Inzhenernyj vestnik Dona, 2012, №2. URL: ivdon.ru/ru/magazine/archive/n2y2012/774.
- 3. Alsus M.M. Inzhenernyj vestnik Dona, 2023, №9. URL: ivdon.ru/ru/magazine/archive/n9y2023/8667
- 4. Goncharenko S.N., Almuntafeki A.F.M. Inzhenernyj vestnik Dona, 2024, №3. URL: ivdon.ru/ru/magazine/archive/n3y2024/9063
- 5. Lavrinenko P.A, Romashina A.A., Stepanov P.S., Chistyakov P.A. Transportnaya dostupnost` kak indikator razvitiya regiona [Transport accessibility as an indicator of regional development]. URL: ecfor.ru/wp-content/uploads/2019/11/transportnaya-dostupnost-kak-indikator-razvitiya-regiona.pdf
- 6. Rudakov M.N., Shegel`man I.R. Inzhenernyj vestnik Dona, 2014, №1. URL: ivdon.ru/ru/magazine/archive/n1y2014/2232
- 7. Shevchenko D.A. Inzhenernyj vestnik Dona, 2014, №1. URL: ivdon.ru/ru/magazine/archive/n1y2014/2254
- 8. Chudnovskaya N.S. Inzhenernyj vestnik Dona, 2013, №4. URL: ivdon.ru/ru/magazine/archive/n4y2013/2042
- 9. Saez G., Rodriguez-Lopez A. African journal of business management, 2011, №5. URL: researchgate.net/publication/266229691 Financial risks in construction projects
- 10. Shibani A., Hasan D., Saaifan J., Sabboubeh H., Eltaip M., Saidani M., Gherbal N. Journal of King Saud University. Engineering sciences, 2022. URL: sciencedirect.com/science/article/pii/S1018363922000435

Дата поступления: 5.11.2024

Дата публикации: 19.12.2024