К расчету на устойчивость П-образной рамы с шарнирным опиранием

А.Д. Ловцов

Тихоокеанский государственный университет, Хабаровск

Аннотация: Рассматривается расчет на устойчивость Π -образной шарнирно опертой рамы. Введено понятие ρ -подобных рам, как рам с одинаковым отношением ρ погонных жесткостей ригеля и стойки. Показано, что параметр v_{cr} , определяющий критическую нагрузку на раму, одинаков для ρ -подобных рам. Получены приближенные формулы, позволяющие определить критический параметр нагрузки cr v и расчетные длины сжатых стержней с погрешностью не более 2%.

Ключевые слова: плоская рама, устойчивость, критическая сила, коэффициент приведенной длины, ρ -подобные рамы, аппроксимация, метод наименьших квадратов.

Причинами отказов конструкции в 18-51% случаев являются ошибки проектирования [1]. Для металлических конструкций потеря устойчивости является причиной отказов в 22-44% случаев. На этапе эскизного проектирования важно иметь простые способы определения расчетных длин сжатых элементов конструкции таких, например, как: крестовые решетки [2]; рамы правильного многоугольного очертания [3]; колонны, балки, плиты [4, 5], частные случаи рам [6]. В статье [7] для однопролетной двухэтажной шарнирно опертой рамы удалось получить простое выражение для параметра v_{cr} , определяющего критическую нагрузку на раму. В настоящей статье показано получение аналогичной зависимости для Π -образной рамы.

Рассмотрим одноэтажную однопролетную раму с шарнирным опиранием стоек (рис. 1).

Изменение критической нагрузки на этаж при произвольном распределении сил, сжимающих стойки рамы.

В случае многоэтажных многопролетных рам величина критической нагрузки на раму F_{cr} зависит от распределения сил F_i по узлам рамы [9, 10].

Для рассматриваемой же рамы замечено, что распределение сжимающих стойки сил $F_1 = \alpha F$, $F_2 = (1 - \alpha) F$ ($\alpha \le 1$) практически не влияет

на величину равнодействующей $R_{cr} = F_{1cr} + F_{2cr} = F_{cr}$ этих сил. Минимальное значение R_{cr}^{min} наблюдается при загружении одной стойки (рис. 1, a), максимальное значение R_{cr}^{max} — при загружении стоек двумя одинаковыми силами (рис. 1, δ). Равнодействующая R_{cr} , именуемая в дальнейшем «нагрузка на этаж», для всех остальных комбинаций загружения лежит в пределах $R_{cr}^{min} \leq R_{cr} \leq R_{cr}^{max}$.

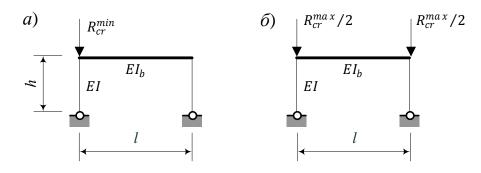


Рис. 1. Расчетная схемам рамы. Варианты загружения:

- а) минимальная нагрузка на этаж;
- б) максимальная нагрузка на этаж

При этом R_{cr}^{min} незначительно отличается от R_{cr}^{max} . Как показывают расчеты, это отличие составляет не более 2%.

Таким образом, если определить F_{cr} при загружении одной стойки, то, тем самым, оказывается с достаточной точностью определена $R_{cr} \approx F_{cr}$ для всех прочих загружений.

р-подобные рамы

Возникает соблазн решить аналитически задачу для рассматриваемой рамы, загруженной одной силой F, и, тем самым, получить решение для целой группы задач.

Используем классический метод перемещений [6, 8]. Обозначим: $l, EI_b, i_b = EI_b/l$ — пролет рамы, абсолютная и погонная жесткость ригеля; h, EI, i = EI/h — высота, абсолютная и погонная жесткость стоек; $\rho = i_b/i$ — отношение погонных жесткостей ригеля и стойки; $v = h\sqrt{F/EI}$; $\varphi_1(v) =$

 $\frac{v^2 \text{tg}v}{3(\text{tg}v-v)}$, $\vartheta_1(v) = \frac{v^3}{3(\text{tg}v-v)} = \varphi_1(v) - \frac{v^2}{3}$ — функции, применяемые при расчете на устойчивость методом перемещений («поправочные коэффициенты»).

Для основной системы метода перемещений обозначим z_1 , z_2 – угловые перемещения левого и правого жестких узлов рамы, z_3 – линейное перемещение ригеля. Тогда матрица жесткости

$$R(v,i,i_b,h) = \begin{pmatrix} 3i\varphi_1(v) + 4i_b & 2i_b & -3i\varphi_1(v)/h \\ 2i_b & 3i + 4i_b & -3i/h \\ -3i\varphi_1(v)/h & -3i/h & 3i\vartheta_1(v)/h^2 + 3i/h^2 \end{pmatrix}$$

или, с учетом $i_b = \rho i$,

$$R(v,i,\rho,h) = i \begin{pmatrix} 3\varphi_1(v) + 4\rho & 2\rho & -3\varphi_1(v)/h \\ 2\rho & 3 + 4\rho & -3/h \\ -3\varphi_1(v)/h & -3/h & 3\vartheta_1(v)/h^2 + 3/h^2 \end{pmatrix}$$

Определитель

$$D(v, i, \rho, h) = |R(v, i, \rho, h)| = \frac{i^3}{h^2} D^*(v, \rho),$$

где

$$D^*(v,\rho) = (4\rho v^2 - 12\rho^2 - 36\rho + 3v^2)\varphi_1(v) + 4\rho^2 v^2 - 12\rho^2 + 4\rho v^2.$$

Следовательно, уравнение устойчивости, переписанное в виде

$$D^*(v_{cr}, \rho) = 0, \tag{1}$$

задает неявную функцию $v_{cr} = v_{cr}(\rho)$.

Получить аналитическое выражение для $v(\rho)$ не представляется возможным. Однако можно сделать вывод о том, что критический параметр v_{cr} зависит только от отношения погонных жесткостей ригеля и стойки.

Следовательно, для множества рам с одинаковым отношением ρ и одинаковым распределением нагрузки (одинаковым коэффициентом α =1) параметр v_{cr} останется неизменным. Нагрузка на этаж при этом $F_{cr} = v_{cr}^2 \frac{EI}{h^2}$. Назовем такое множество рам – ρ -подобными рамами.

Коротко говоря — критический параметр v_{cr} для ρ -подобных рам одинаков.

Например, рама с $l_1=18, h_1=3$, $EI_{b1}=3EI$ $\left(\rho_1=\frac{EI_b}{l}\frac{h}{EI}=\frac{3EI}{18}\frac{3}{EI}=\frac{1}{2}\right)$ подобна в указанном смысле раме с $l_2=3, h_2=6$, $EI_{b2}=EI/4$ $\left(\rho_2=EI/436EI=12\right)$.

Критические силы, однако, будут различными, поскольку $F_{cr} = v_{cr}^2 \frac{EI}{h^2}$, а жесткость EI и высота h стоек отличаются одна от другой для ρ -подобных рам. Так, для описанных выше рам, критическая сила в первом случае будет в 4 раз больше, чем во втором $\left(\frac{F_{cr1}}{F_{cr2}} = \frac{v_{cr}^2 EI}{h_1^2} \frac{h_2^2}{v_{cr}^2 EI} = \left(\frac{h_2}{h_1}\right)^2 = \left(\frac{6}{3}\right)^2 = 4\right)$.

Аппроксимация зависимости $v_{cr} = v_{cr}(ho)$

Поскольку нелинейное уравнение (1) не поддается аналитическому решению, построим искомую зависимость $v_{cr} = v_{cr}(\rho)$ на основе численного решения уравнения (1). Для этого проведем серию расчетов для рамы, меняя в ней только жесткость ригеля EI_b , а вместе с ней и отношение погонных жесткостей $\rho = 1 \times 10^m$. Сведем результаты серии расчетов в таблицу, фрагмент которой показан на рис. 2, a. Графически эти результаты удобно представить в логарифмической шкале (рис. 2, δ).

Прокомментируем график, полученный по результатам численного эксперимента.

При $\rho \to 0$ имеем предельный случай ригеля бесконечно малой жесткости на изгиб и бесконечно большой жесткости на растяжение/сжатие. Расчетная схема такой рамы приближается к механизму с ригелем, шарнирно соединенным со стойками. Критическая сила при этом стремится к нулю.

При $\rho \to \infty$ имеем предельный случай ригеля абсолютно жесткого на изгиб и на растяжение/сжатие (рис. 3). Для этой рамы решением уравнения устойчивости $\eta_1(v)+1=0$ является значение $v_{cr}=2.203644=0.701\pi\approx 0.7\pi$.

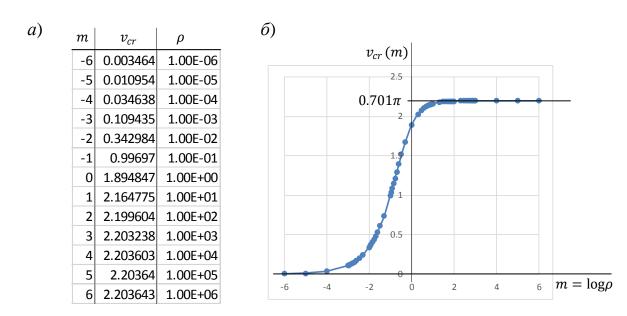


Рис. 2. Результаты численного эксперимента: табличное – a) и графическое – δ) представление результатов

Таким образом, критический параметр v_{cr} лежит в пределах $0 \le v_{cr} \le 0.7\pi$ (рис. 2, δ).

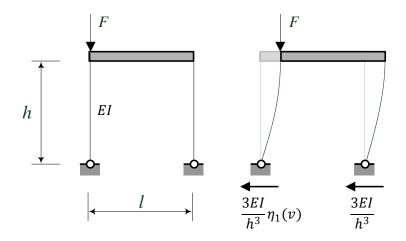


Рис. 3. Шарнирно опертая рама с бесконечно жестким ригелем.

На отрезке от $-6 \le m \le -4$ параметр v_{cr} близок к нулю. На отрезке от $3 \le m \le 6$ параметр v_{cr} практически не меняется и близок к предельному 0.7π (см. рис. 2).

На отрезке $-4 \le m \le 3$ зависимость $v_{cr} = v_{cr}(\log \rho) = v_{cr}(m)$ была аппроксимирована (с использованием метода наименьших квадратов) выражением следующего вида:

$$v_{cr}(m) = \begin{cases} 1.247 + 0.994 \ \mathrm{arctg}(1.025m + 0.768) & \text{при } m < 0, \\ 1.977 + 0.160 \ \mathrm{arctg}(2.909m - 0.554) & \text{при } m \ge 0. \end{cases}$$
 (2)

График этой функции представлен на рис. 4 (крестиками показаны результаты численного эксперимента, сплошной линией – аппроксимация (2)). Погрешность определения критической силы $F_{cr} = v_{cr}^2 \frac{EI}{h^2}$ (с использованием аппроксимации v_{cr} согласно (2) при загружении одной стойки и при $0.01 \le \rho \le 1000$ составит не больше 1%.

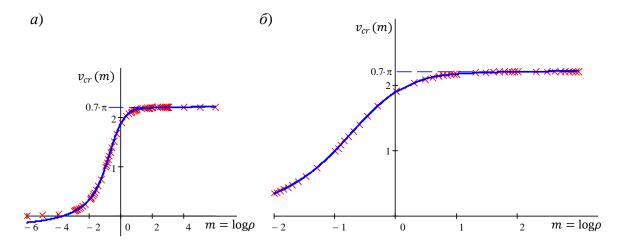


Рис. 4. Аппроксимация (сплошная линия) результатов численного эксперимента (X):

$$a$$
) – на интервале $-6 \le m \le 6$;

 δ) – на практически значимом интервале $-2 \le m \le 3$

Алгоритм расчета на устойчивость:

- 1. по данным расчетной схемы определяем относительную погонную жесткость ригеля $\rho = \frac{EI_rh}{FII}$ и $m = \log \rho$;
- 2. по зависимости (2) определяем значение параметра $v_{cr} = v_{cr}(m)$;
- 3. определяем нагрузку на этаж $F_{cr} = \frac{v_{cr}^2 EI}{h^2}$;

4. распределяем нагрузку на этаж по стойкам: задаем α ;

5. определяем
$$v_1 = h\sqrt{\frac{F_1}{EI}} = h\sqrt{\frac{\alpha F_{cr}}{EI}} = h\sqrt{\frac{\alpha v_{cr}^2 EI}{h^2 EI}} = v_{cr}\sqrt{\alpha}, \qquad v_2 = v_{cr}\sqrt{1-\alpha};$$

6. определяем коэффициенты приведенных длин
$$\mu_1 = \frac{\pi}{v_1}$$
, $\mu_2 = \frac{\pi}{v_2}$.

Ясно, что изменением жесткости ригеля можно «регулировать» величину критической силы. Отсюда возникает следующая задача.

Обратная задача

Пусть для рассматриваемой рамы заданы пролет l, высота h, жесткость стойки EI и предполагаемая критическая нагрузка на этаж R_{cr} . Требуется определить жесткость ригеля, обеспечивающую устойчивость рамы при $F < R_{cr}$.

Предлагается следующий алгоритм решения задачи:

- 1. по заданным параметрам задачи определяем $v_{cr} = h\sqrt{\frac{F_{cr}}{EI}};$
- 2. по найденному v_{cr} определяем $m = \log \rho$, используя (2) и рис. 4. δ ;
- 3. определяем $\rho = 10^{m}$.
- 4. из равенства $\rho=i_b/i=\frac{EI_b}{l}\frac{h}{EI_c}$ определяем жесткость ригеля $EI_b=\frac{l}{h}\rho EI$.

Пример

Рассмотрим три ρ -подобных рамы с $\rho = 0.5$ (рис. 5).

Реализуем приведенный выше алгоритм расчета на устойчивость для рамы на рис. 5. *a*:

1.
$$\rho = \frac{EI_rh}{EIl} = \frac{3EI \cdot 3}{EI \cdot 18} = \frac{1}{2}$$
, $m = \log 0.5 = -0.30103$;

2.
$$v_{cr} = v_{cr}(m) = 1.675096;$$

3.
$$F_{cr} = \frac{v_{cr}^2 EI}{h^2} = 2.805946 \cdot \frac{EI}{h^2}$$
;

4. Полагаем $\alpha = 1/3$;

5.
$$v_1 = v_{cr}\sqrt{\alpha} = 0.967117$$
, $v_2 = v_{cr}\sqrt{1-\alpha} = 1.36771$;

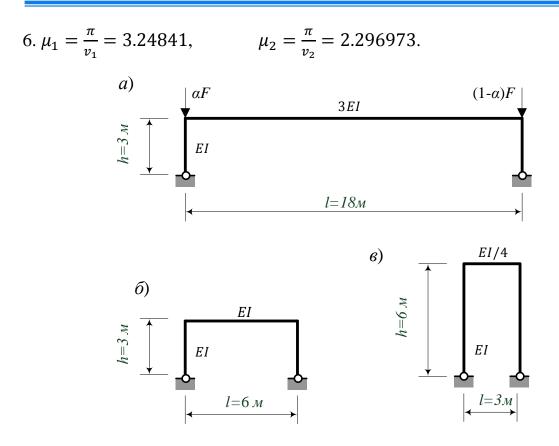


Рис. 5. Расчетные схемы ρ -подобных рам ($\rho = 0.5$)

Ясно, что для двух других рам результаты выполнения первых 4-х пунктов приведенного расчета будут одинаковыми. Отличия появятся только в результатах выполнения п. п. 5, 6.

Для всех трех рам были проведены расчеты, результаты которых представлены в таблице, где приняты следующие обозначения.

 \overline{F}_{cr_a} , \overline{F}_{cr_e} — приближенное и точное значение критической нагрузки на этаж (в долях от EI/h^2).

 v_{cr_a}, v_{cr_e} – приближенное и точное значение критического параметра.

 $v_{cr1_a}, v_{cr1_e}, v_{cr2_a}, v_{cr2_e}$ — приближенное и точное значение критического параметра для левой (индекс «1») и правой (индекс «2») стоек.

 μ_{1_a} , μ_{1_e} , μ_{2_a} , μ_{2_e} — приближенное и точное значение коэффициента приведенной длины для левой (индекс «1») и правой (индекс «2») стоек.

Таблица

Результаты расчетов

α	v_{cr_a}	v_{cr_e}	\overline{F}_{cr_a}	\overline{F}_{cr_e}	v_{cr1_a}	v_{cr1_e}	v_{cr2_a}	v_{cr2_e}	μ_{1_a}	μ_{1_e}	μ_{2_a}	μ_{2_e}
1	1.675	1.680		2.823	1.675	1.6802	-	-	1.876	1.870	-	-
1/2		1.686		2.844	1.184	1.1925	1.1845	1.1925	2.652	2.636	2.652	2.635
1/3		1.686		2.842	0.9672	0.9732	1.3677	1.3764	3.248	3.228	2.297	2.282

По результатам приведенных расчетов можно сделать следующие выводы.

Приближенные значения v_{cr} и \overline{F}_{cr} (в долях от EI/h^2) для всех ρ подобных рам при любом распределении нагрузки, не меняются, поскольку
отношение погонных жесткостей ригеля и стойки для всех рам одинаковы.

Точные значения v_{cr} , \overline{F}_{cr} (в долях от EI_c/h^2), коэффициенты приведенных длин μ_1 , μ_2 при заданном распределении сил (при заданном α) не меняются для всех ρ -подобных рам.

Подчеркнем, что величины собственно критических сил для всех рам и разных α будут отличаться.

При изменении распределения сил по стойкам рамы точные решения незначительно отличаются один от другого и от приближенного решения (не больше, чем на 2 %).

Получена приближенная формула для Π -образной шарнирно опертой рамы, позволяющая определить критический параметр нагрузки v_{cr} и расчетные длины сжатых стержней («в запас») с погрешностью не более 2%.

Литература

1. Арушонок Ю.Ю. Об ошибках проектирования строительных конструкций // Инженерный вестник Дона, 2021, №11. URL: ivdon.ru/ru/magazine/archive/n11y2021/7285

- 2. Лиманцев А.А. Универсальные формулы для определения расчетной длины элементов крестовой решетки // Инженерный вестник Дона, 2021, №5. URL: ivdon.ru/ru/magazine/archive/n5y2021/6951
- 3. Журавлев Д.А. Упругая устойчивость статически неопределимой стержневой конструкции многоугольной конфигурации // Инженерный вестник Дона, 2019, №1. URL: ivdon.ru/ru/magazine/archive/n1y2019/5564
- 4. Aghayere A., Vigil J. Structural steel design: a practice-oriented approach. Prentice Hall, 2009. P. 692.
- 5. Sukhvarsh J. Structural stability theory and practice: buckling of columns, beams, plates, and shells. Hoboken: Wiley, 2021. P. 642.
- 6. Прочность, устойчивость, колебания. Справочник в трех томах. Том 3. Под ред. д-ра техн. наук И. А. Биргера и чл.-кор. АН Латвийской ССР Я. Г. Пановко. М.: Машиностроение, 1968. 569 с.
- 7. Ловцов А. Д., Мишакин, И. Е. Ю.А. Пак Ю. А. К определению критической нагрузки на однопролетную двухэтажную шарнирно опертую раму // Инженерный вестник Дона, 2022, №7. URL: ivdon.ru/ru/magazine/archive/n7y2022/7803
- 8. Смирнов А.Ф., Александров А. В., Лащеников Б. Я., Шапошников Н. Н. Строительная механика. Динамика и устойчивость сооружений. М.: Стройиздат, 1984. 415 с.
- 9. Дворников В. А., Ловцов А. Д., Чернобров Е. О. Влияние схемы загружения на величину критической силы для многопролетной многоэтажной плоской рамы / Дальний Восток: проблемы развития архитектурно-строительного и дорожно-транспортного комплекса: материалы Международной научно-практической конференции. Хабаровск: Изд-во Тихоокеан. гос. ун-та, 2015. Вып. 15. С. 345—347
- 10. Дворников В. А., Ловцов А. Д., Чернобров Е. О. Влияние схемы загружения на расчетные длины стержней многопролетной многоэтажной

рамы / Дальний Восток: проблемы развития архитектурно-строительного и дорожно-транспортного комплекса: материалы Международной научнопрактической конференции. — Хабаровск: Изд-во Тихоокеан. гос. унта, 2016. — Вып. 16. — С. 460 — 462

References

- 1. Arushonok YU. YU. Inzhenernyj vestnik Dona. 2021. №11. URL: ivdon.ru/ru/m agazine/archive/n11y2021/7285.
- 2 Limancev A. A. Inzhenernyj vestnik Dona. 2021. №5. URL: ivdon.ru/ru/magazin e/archive/n5y2021/6951.
- 3. Zhuravlev D.A. Inzhenernyj vestnik Dona. 2019. №1. URL: ivdon.ru/ru/magazi ne/archive/n1y2019/5564.
- 4. Aghayere A., Vigil J. Structural steel design: a practice-oriented approach. Prentice Hall, 2009. p. 692.
- 5. Sukhvarsh J. Structural stability theory and practice: buckling of columns, beams, plates, and shells. Hoboken: Wiley, 2021. p. 642.
- 6. Prochnost', ustojchivost', kolebaniya. [Strength, stability, vibrations] Spravochnik v trekh tomah. Tom 3. Pod red. d-ra tekhn. nauk I. A. Birgera i chl.-kor. AN Latvijskoj SSR YA. G. Panovko. M.: Mashinostroenie, 1968. p. 569.
- 7. Lovcov A. D., Mishakin I. E., Pak Ju. A. Inženernyj vestnik Dona, 2022, №7. URL: ivdon.ru/magazine/archive/n1y2009/250/.
- 8. Smirnov A.F., Aleksandrov A. V., Lashhenikov B. Ja., Shaposhnikov N. N. Stroitel'naya mekhanika. Dinamika i ustojchivost' sooruzhenij. [Structural Mechanics. Dynamics and Stability of Structures] M.: Strojizdat, 1984. p. 415.
- 9. Dvornikov V. A., Lovcov A. D., Chernobrov E. O. Dal'nij Vostok: problemy razvitiya arhitekturno-stroitel'nogo i dorozhno-transportnogo kompleksa: materialy Mezhdunarodnoj nauchno-prakticheskoj konferencii. Khabarovsk, 2015, Release. 15. pp. 345–347.

10. Dvornikov V. A., Lovcov A. D., Chernobrov E. O. Dal'nij Vostok: problemy razvitiya arhitekturno-stroitel'nogo i dorozhno-transportnogo kompleksa: materialy Mezhdunarodnoj nauchno-prakticheskoj konferencii. Khabarovsk, 2016, Release. 16. pp. 460–462

Дата поступления: 14.07.2024

Дата публикации:2.09.2024