Строительные растворы на отходах камнедробления

Т.А. Хежев, А.Р. Кажаров, А.Ю. Налоев, Р.Н. Семенов, З.А. Хамуков, Т.Х. Желоков

Кабардино-Балкарский государственный университет, Нальчик

Аннотация: Представлены результаты исследований по разработке растворных смесей на отходах камнедробления с применением вулканического пепла и добавки Д-5. Предложены составы строительных растворов, позволяющие существенно сократить расход портландцемента и одновременно улучшить физико-механические свойства растворных смесей и раствора. Применение многофункциональной добавки Д-5 в смесях позволяет повысить прочностные свойства раствора при одновременном улучшении реологических свойств растворных смесей. Замена цемента до 20 % от массы вулканическим пеплом фракции d<0,14 мм в растворных смесях не вызывает заметного раствора. Разработанные снижения прочностных свойств растворные смеси соответствуют требованиям ГОСТ 28013-98 и имеют низкую себестоимость за счет использования местного сырья и отходов камнедробления.

Ключевые слова: портландцемент, отходы камнедробления, вулканический пепел, добавка Д-5, предел прочности при изгибе и сжатии, подвижность смеси, расслаиваемость, водоудерживающая способность.

Ресурсосбережение и защита окружающей среды является актуальной проблемой современного строительного материаловедения. Применение строительных материалов на местном сырье с использованием техногенных отходов может существенно снизить себестоимость строительства [1-4].

Кабардино-Балкарская республика располагает большими запасами гравийно-песчаной смеси, которые распространены по долинам наиболее крупных рек. При камнедроблении гравийно-песчаной смеси для получения крупного заполнителя образуются отходы в виде мелких фракций различного гранулометрического и химического состава. Они используются в практике строительства в строительных растворах и бетонах без проведения необходимых исследований.

Строительные растворы являются композиционным материалом, востребованным на всех стадиях возведения зданий и сооружений, начиная

от возведения стен и заканчивая отделочными работами [5-7]. Улучшение качества и снижение себестоимости строительных растворов является одной актуальных современной строительной отрасли. Весьма ИЗ задач решения данной проблемы перспективным направлением является использование отходов камнедробления для производства строительных растворов.

Цель работы заключалась в разработке эффективных строительных растворов с улучшенными физико-механическими свойствами на основе отходов камнедробления.

В исследованиях использовались: портландцемент ПЦ400-ДО; отходы камнедробления гравийно-песчаной смеси Нарткалинского карьера КБР с максимальной крупностью зерен 2,5 мм; добавка Д–5 производства ООО НПП «Ирстройпрогресс» (г. Владикавказ); вулканический пепел Заюковского месторождения с максимальной крупностью зерен 0,14 мм.

Вначале было исследовано влияние соотношения цемента и заполнителя, подвижности смеси на свойства строительного раствора. Для исследования свойств составов на портландцементе ПЦ400-ДО с добавками вулканического пепла и без добавки были изготовлены образцы-балочки размерами 4х4х16 см в соответствии с ГОСТ 5802–86. Вулканический пепел рассматривался в качестве активной минеральной добавки в композит. Подвижность растворной смеси определялась по погружению конуса СтройЦНИЛ. Результаты исследований прочности раствора на 28 сутки твердения в нормальных условиях по ГОСТ 310.4 приведены в табл. 1.

Таблица 1 Свойства строительного раствора на отходах камнедробления

Соотношение	Количество	Под-	Предел	Предел
цемента к	добавки пепла	вижность,	прочности	прочности при
песку по	в % от массы	СМ	при изгибе	сжатии (МПа)
массе	цемента		(МПа)	

			на 7	на 28	на 7	на 28
			сутки	сутки	сутки	сутки
1:4		7,5	3,0	5,5	10,0	16,4
1:4	10	7,5	2,9	5,3	9,7	16,2
1:4	20	7,5	2,8	5,2	9,6	16,0
1:4	30	7,5	2,5	4,8	8,5	15,6
1:4		10,8	2,8	4,5	8,4	14,0
1:4	10	10,8	2,7	4,4	8,2	13,8
1:4	20	10,8	2,6	4,2	8,1	13,6
1:4	30	10,8	2,3	3,7	7,5	13,1
1:5		7,0	2,5	3,9	7,6	12,5
1:5	10	7,0	2,4	3,8	7,5	12,3
1:5	20	7,0	2,3	3,6	7,4	12,2
1:5	30	7,0	1,8	3,2	6,8	11,6
1:5		10,3	2,2	3,4	6,9	11,7
1:5	10	10,3	2,2	3,3	6,8	11,5
1:5	20	10,3	2,1	3,2	6,7	11,4
1:5	30	10,3	1,8	2,9	5,8	10,6

Из таблицы 1 следует, что с увеличением количества добавки вулканического пепла в цемент происходит снижение прочности на сжатие и изгиб раствора. В растворах можно заменить портландцемент ПЦ400-ДО вулканическим пеплом до 20 % с максимальными размерами зерен до 0,14 мм без существенного уменьшения показателей пределов прочности на изгиб и сжатие образцов нормального твердения. Изменение подвижности растворной смеси одинакового состава существенно влияет на прочностные характеристики раствора.

Введение в состав строительных растворных смесей различных добавок с целью регулирования их технологических свойств (подвижности, сроков схватывания, расслаиваемости, водоудерживающей способности), а также эксплуатационных свойств растворов (прочности, пористости, гидрофобности и водонепроницаемости и др.) давно используется в строительном материаловедении [8, 9, 10].

Нами исследовалась влияние добавки Д-5 на свойства растворной 2). Выбор добавки Д–5 раствора (табл. обусловлен его многофункциональными свойствами и может быть использована вместо нескольких традиционных добавок, обладает свойствами так как пластификатора, ускорителя твердения, а также повышает прочность, водонепроницаемость, сульфатостойкость и долговечность бетонов и растворов.

Таблица 2 Влияние добавки Д–5 на свойства строительного раствора на отходах камнедробления

Соотношение	Добавка Д–5	Под-	Предел		Предел	
цемента к	в % от	вижность,	прочности		прочности при	
песку по	массы	СМ	при изгибе		сжатии (МПа)	
массе	цемента		(МПа)			
			на 7	на 28	на 7	на 28
			сутки	сутки	сутки	сутки
1:4	_	7,5	3,0	5,5	10,0	16,4
1:4	1	7,3	4,0	5,8	14,0	18,2
1:4	2	7,4	4,3	6,3	15,6	19,7
1:4	3	7,3	4,5	7,1	16,4	22,1
1:4	_	10,8	2,8	4,5	8,4	14,0
1:4	1	10,7	3,5	5,0	10,3	16,0
1:4	2	10,8	3,9	5,4	12,4	17,4
1:4	3	10,7	4,0	5,9	12,6	18,3

Исследования показали, что при введении до 3 % добавки Д–5 по массе от цемента прочностные характеристики раствора повышаются на 30–64 % при одинаковой подвижности растворной смеси.

Дальнейшие эксперименты были направлены на изучение свойств растворных смесей по ГОСТ 5802–86 и их соответствие требованиям ГОСТ 28013–98. Исследовалась смесь подвижностью 10 см состава 1:4 (цемент к песку) с содержанием добавки Д–5 2 % от массы цемента (табл. 3).

Таблица 3

Свойства растворной смеси на отходах камнедробления и соответствие требованиям ГОСТ

п/п	Плотность,	Расслаи-	Водоудер-	Водоот-
	Γ/cm^3	ваемость,	живающая	деление, %
		%	способность,	
			%	
Результаты	2,11	0,9	98,1	2,2
эксперимента				
Требования	_	≤10	≥90	_
ГОСТ				

Из таблицы 3 следует, что предложенные растворные смеси соответствуют требованиям ГОСТ 28013–98. Разработанные составы позволяют сократить расход портландцемента при одновременном улучшении физико-механических свойств растворной смеси и раствора.

Литература

- 1. Ахматов М.А. Эффективность применения местных строительных материалов и бетона. Нальчик: Эльбрус, 1986. 160 с.
- 2. Хежев Х.А., Хежев Т.А., Кимов У.З., Думанов К.Х. Огнезащитные и жаростойкие композиты с применением вулканических горных пород // Инженерный вестник Дона, 2011. №4 URL: ivdon.ru /magazine/archive/n4y2011/710.
- 3. Хежев Т.А., Матаев Т.З., Гедгафов И.А., Дымов Р.Х. Фиброгипсовермикулитобетонные композиты с применением вулканического пепла // Инженерный вестник Дона, 2015. №1 URL: ivdon.ru/ru/magazine/archive/n1p2y2015.
- 4. Овсюков М.Ю., Сухов А.А., Хежев Т.А. Технология фибропенобетонов с применением отходов пиления вулканического туфа // Вестник Дагестанского государственного технического университета. Технические науки. Махачкала. №1 (36). 2015. С. 107–113.

- 5. Mango C.A. Bizantine brick stamps // Amer. Journ. Archaeology. 1950. Vol. 54. P. 19.
- 6. Megaw A. Notes on recent work the Byzantine Institute in Istanbul // Dumbarton Oaks Papers. 1963. N 17. pp. 349–367.
- 7. Muller R. On limekilns found in Hungary // Research in industrial archaeology in Hungary. Veszprem, 1981. P. 65.
- 8. Ребиндер П.А. Поверхностно-активные вещества. М.: Знание, 1961. 93 с.
- 9. Хигерович М.И., Байер В.Е. Гидрофобно-пластифицирующие добавки для цементов, растворов и бетонов. М.: Стройиздат, 1979. 126 с.
- 10. Ратинов В.Б., Розенберг Т.И. Добавки в бетон. М.: Стройиздат. 1989. 186 с.

References

- 1. Akhmatov M.A. Effektivnost' primeneniya mestnykh stroitel'nykh materialov i betona [The effectiveness of the use of local building materials and concrete]. Nal'chik: El'brus, 1986. 160 p.
- 2. Khezhev Kh.A., Khezhev T.A., Kimov U.Z., Dumanov K.Kh. Inženernyj vestnik Dona (Rus), 2011. №4 URL: ivdon.ru/magazine/archive/n4y2011/710.
- 3. Khezhev T.A., Mataev T.Z., Gedgafov I.A., Dymov R.Kh. Inženernyj vestnik Dona (Rus), 2015. №1 URL: ivdon.ru/ru/magazine/archive/n1p2y2015.
- 4. Ovsyukov M.Yu., Sukhov A.A., Khezhev T.A. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. Makhachkala. №1 (36). 2015. pp. 107–113.
 - 5. Mango S.A. Amer. Journ. Archaeology. 1950. Vol. 54. p. 19.
 - 6. Megaw A. Dumbarton Oaks Papers. 1963. N 17. pp. 349–367.
- 7. Muller R. Research in industrial archaeology in Hungary. Veszprem, 1981. p. 65.

- 8. Rebinder P.A. Poverkhnostno-aktivnye veshchestva [The surfactants]. M., Znanie, 1961. 93 p.
- 9. Khigerovich M.I., Bayer V.E. Gidrofobno-plastifitsiruyushchie dobavki dlya tsementov, rastvorov i betonov [The Hydrophobic- plasticizing additives for the cements, the solutions and the concretes]. M., Stroyizdat, 1979. 126 p.
- 10. Ratinov V.B., Rozenberg T.I. Dobavki v beton [Additives to the concrete]. M., Stroyizdat. 1989. 186 p.