Производство тяжелого бетона с использованием вторичного сырья промышленных заводов

С. Б. Каряев

Северо-Кавказский горно-металлургический институт (ГТУ)

Аннотации: В данной статье рассматривается использование вторичного сырья промышленных заводов при производстве тяжелого бетона. Эта тема очень актуальна в нынешнее время, так как с каждым годом строительная отрасль расширяется, увеличивается потребность в бетонных смесях. Вследствие увеличения производства бетонных смесей сокращается количество природного сырья, используемого в качестве заполнителя, соответственного требуется альтернативное сырье, для сохранения природных запасов.

Ключевые слова: строительство, строительный материал, отходы промышленности, вторичное сырье, загрязнение окружающей среды, экология, бетонная смесь, новая технология.

В настоящее время гражданское и промышленное строительство набирает большие темпы нового строительства. В нашей республике строятся новые жилые районы, детские сады, школы, промышленные предприятия. Все это требует большого количества строительных материалов и изделий. В частности больших объемов сборного и монолитного железобетона высоких марок, так как регион относится к сейсмически активной территории [1,2].

При производстве бетонных смесей используются заполнители местного происхождения, однако запасы природного сырья с каждым годом сокращаются, вследствие чего возникает необходимость использования альтернативного сырья.

Также в нашем регионе функционируют и функционировали промышленные заводы, которые ежегодно вырабатывали большое количество вторичного сырья. Эти побочные продукты складировались на плодородных территориях города, тем самым загрязняя атмосферу и гидросферу. Исходя из вышеизложенного, мы в своей работе применили в определенных количествах вторичное сырье в качестве заполнителя бетонной смеси [3-5].

Теоретически рассчитывали составы бетонных смесей базового и с использованием вторичного сырья в качестве мелкого заполнителя, таблица 1.

За базовую марку бетонной смеси выбрали М 350, с нормативной прочностью 327,4 кгс/см² [6].

Таблица 1. Составы бетонных смесей

Вид бетона	Цемент	Щебень	Песок	Вода	Добавка
	(кг)	(кг)	(кг)	(л)	(кг)
Базовый	375	1050	775	190	
вторичное сырье промышленных заводов	375	1050	607	190	Добавляем 7% от массы б.с. отходов, при этом уменьшая на это количество песок 168

После расчетов замешивали подобранные составы. Далее определяли подвижность бетонных смесей, которая показала результата П2 (9 см.), после удовлетворения показателей изготавливали бетонные образцы для определения основных физико-механических свойств бетона.

По истечении 3, 7 и 28 суток в лаборатории на базе института производили испытания бетонных образцов на определение прочностных характеристик, водонепроницаемости и морозостойкости.

Образцы, с использованием вторичного сырья местных промышленных заводов показали более высокий результат по всем физико-химическим свойствам (прочность, водонепроницаемость, морозостойкость). Это связано

с тем, что вторичное сырье содержит в своем составе отходы различных металлов [7-9].

Результаты проведенных лабораторных исследований отобразили на рис. 1.

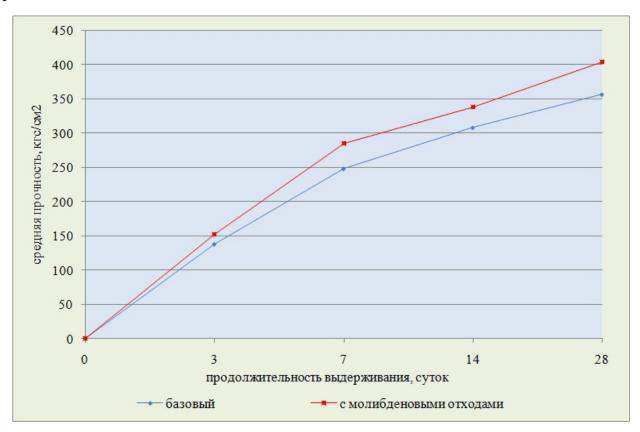


Рис.1. - Диаграмма результатов испытаний образцов на прочность

Экономическое обоснование применения вторичного сырья при производстве бетонной смеси по результатам расчетов, произведенных на четвертый квартал 2024 года — стоимость 1м³ базового бетона марки М350 составляет 5 201 руб., стоимость 1м³ бетона с использованием вторичного сырья составила — 5 003 руб. Экономия достигается за счет того, что мы вместо мелкого вяжущего в количестве 168 кг использовали вторичное сырье промышленных заводов, и затраты на транспортировку менее затратное, так как промышленные предприятия находятся вблизи бетонных заводов, соответственно и стоимость бетонной смеси с таким составом дешевле [10, 11].

Использование вторичного сырья в составе бетонных смесей позволяет нам сократить использование природного сырья, запасы которого с каждым годом сокращаются, также освобождаются огромные плодородные территории, занятые неиспользуемым вторичным сырьем.

Литература

- 1. Кальгин А.А., Фахратов М.А., Кикава О.Ш., Баев В.В. «Промышленные отходы в производстве строительных материалов». М.-2002. С.131.
- 2. Ласкорин Б.Н., Громов Б.В., Цыганков А.П., Сенин В.Н. Проблемы развития безотходных производств. М.: Стройиздат, 1981. С. 170-172.
- 3. Дворкин Л.И., Дворкин О.Л. Основы бетоноведения. СПб.:Стройбетон, 2006. С. 531-540.
- 4. Долгорев А.В. Вторичные сырьевые ресурсы в производстве строительных материалов: Физико-химический анализ: Справочное пособие. М.: Стройиздат, 1990. С. 320-331.
- 5. Тотурбиев В.Д., Парамазова Ф.Ш. Экологически чистая технология производства строительных материалов. Бетон и железобетон. 1996. № 4. С. 16-18.
- 6. Шейкин А.Е., Чеховский Ю.В., Бруссер М.И. Структура и свойства цементных бетонов. М.: Стройиздат, 1979. С. 257.-344.
- 7. Tuskaeva Z.R. and Karyaev S.B. Influence of various additives on properties of concrete // Conclusion E3S Web of Conferences, 2020, URL: doi.org/10.1051/e3sconf/2020164140 07.
- 8. Kim, J.-K. Experimental study of the fatigue behavior of high strength concrete // Cement and Concrete Research. 1996. Vol. 26, Issue 10. P. 1513–1523.

- 9. Курочка П.Н., Гаврилов А.В. Бетоны на комплексном вяжущем и мелком песке // Инженерный вестник Дона, 2013, №1. URL: ivdon.ru/ru/magazine/archive/n1y2013/1562/.
- 10. Страданченко С.Г., Плешко М.С., Армейсков В.Н. Разработка эффективных составов фибробетона для подземного строительства // Инженерный вестник Дона, 2013, №4. URL: ivdon.ru/ru/magazine/archive/n4y2013/1995/.
- 11. Курочка П.Н., Гаврилов А.В. Бетоны на комплексном вяжущем и мелком песке // Инженерный вестник Дона, 2013, №1. URL: ivdon.ru/ru/magazine/archive/n1y2013/1562/.

References

- 1. Kal'gin A.A., Faxratov M.A., Kikava O.Sh., Baev V.V. Promy'shlenny'e otxody' v proizvodstve stroitel'ny'x materialov [Industrial waste in the production of building materials]. M.-2002. p.131.
- 2. Laskorin B.N., Gromov B.V., Cygankov A.P., Senin V.N. Problemy' razvitiya bezotxodny'x proizvodstv [Problems of development of waste-free production]. M.: Strojizdat, 1981. pp. 170-172.
- 3. Dvorkin L.I., Dvorkin O.L. Osnovy` betonovedeniya [Fundamentals of concrete science]. SPb.:Strojbeton, 2006. pp. 531-540.
- 4. Dolgorev A.B. Vtorichny'e sy'r'evy'e resursy' v proizvodstve stroitel'ny'x materialov: Fiziko-ximicheskij analiz: Spravochnoe posobie [Secondary raw materials in the production of building materials: Physicochemical analysis: A reference guide]. M.: Strojizdat, 1990. pp. 320-331.
- 5. Toturbiev V.D., Paramazova F.Sh. Beton i zhelezobeton. 1996. № 4. pp. 16-18.

- 6. Shejkin A.E., Chexovskij Yu.V., Brusser M.I. Struktura i svojstva cementny'x betonov [Structure and properties of cement concretes]. M.: Strojizdat, 1979. pp. 257.-344.
- 7. Tuskaeva Z.R. and Karyaev S.B. Conclusion E3S Web of Conferences, 2020, URL: doi.org/10.1051/e3sconf/2020164140 07.
- 8. Kim, J.-K. Cement and Concrete Research. 1996. Vol. 26, Issue 10. pp. 1513–1523.
- 9. Kurochka P.N., Gavrilov A.V. Inzhenernyi vestnik Dona, 2013, №1. URL: ivdon.ru/ru/magazine/archive/n1y2013/1562/.
- 10. Stradanchenko S.G., Pleshko M.S., Armeiskov V.N. Inzhenernyi vestnik Dona, 2013, №4. URL: ivdon.ru/ru/magazine/archive/n4y2013/1995/.
- 11. Kurochka P.N., Gavrilov A.V. Inzhenernyi vestnik Dona, 2013, №1. URL: ivdon.ru/ru/magazine/archive/n1y2013/1562/.

Дата поступления: 3.11.2024

Дата публикации: 1.01.2025