Жаростойкие фиброармированные композиты на основе вулканической пемзы

Т.А. Хежев, А.З. Жуков, А.В. Журтов, М.И. Гулиев, А.Л. Хежев, А.Х. Глашев Кабардино-Балкарский государственный университет, Нальчик

Аннотация: Представлены результаты исследований по разработке жаростойких фиброармированных композитов с применением вулканической пемзы. Применение базальтовых волокон в композитах позволяет повысить прочность, жаростойкие свойства композита и снизить усадочные деформации. Выявлены оптимальный процент армирования по объему фибрами бетонной матрицы и соотношение длины волокон к диаметру с применением метода математического планирования эксперимента. Получены математические модели прочностных свойств композита.

Ключевые слова: портландцемент, вулканическая пемза, базальтовое волокно, жаростойкие свойства, предел, предел прочности при сжатии и изгибе композита.

В качестве легких заполнителей в жаростойких композитах используют вспученный вермикулит, перлит, гранулированная минеральная керамзит и другие [1, 2, 3, 4]. В Кабардино-Балкарской республике имеются запасы пемзовых песков с насыпной плотностью 600–700 кг/м³ [5]. В работах [6, 7] были разработаны жаростойкие и огнезащитные вермикулитобетонные композиты с применением вулканических горных пород. Исследования жаростойких композитов с применением вулканической пемзы ранее не проводились. Вместе с тем характеристики пемзы могут позволить получать эффективные жаростойкие улучшенными физикокомпозиты механическими свойствами.

В экспериментах использовались: вулканическая пемза фракции 0-1,25 мм Псыхурейского месторождения с насыпной плотностью 700 кг/м³; Белгородский портландцемент ПЦ500-ДО; базальтовое волокно марки РНБ-9-1200-4с производства ОАО «Ивотстекло».

Образцы размерами 4х4х16 см из смеси формовались на стандартной виброплощадке. Подвижность смеси определялась по погружению конуса

СтройЦНИЛ и составляла 3-5 см. Твердение образцов происходило в естественных условиях. Перед испытанием балочки высушивались до постоянной массы при t = 105 °C.

Результаты исследований образцов на портландцементе ПЦ500-Д0 без добавок и с добавками вулканической пемзы приведены в табл. 1.

Таблица 1 Жаростойкие свойства композита с применением вулканической пемзы

		Свойства цементного камня (композита)									
Количество	средняя	предел прочности при			предел прочности при						
добавки	, в і	возрасте,	сут	изгі	ибе (МП	a) в	сжа	гии (МП	а) в		
пемзы в % по			•	ВО	зрасте, с	CVT	BO	зрасте, с	VΤ		
массе от		28			28			28			
цемента	темпера	атура нагр	оева, °С	темпер	атура н	агрева,	темпера	тура нагј	оева, °С		
	105	600	800	105	600	800	105	600	800		
	ПЦ500-ДО, без добавки										
0	1788	1769	1760	5,8	5,3	4,4	46,0	26,7	23,2		
	ПЦ500-	-ДО, доба	вка пемзі	ы с разм	ерами зе	ерен 0 <d< td=""><td><0,16 мм</td><td></td><td></td></d<>	<0,16 мм				
30	1609	1538	1528	6,4	6,3	6,3	39,5	25,4	24,2		
	ПЦ500-	-ДО, доба	вка пемзі	ы с разм	ерами зе	ерен 0 <d< td=""><td><0,31 мм</td><td></td><td></td></d<>	<0,31 мм				
20	1764	1746	1717	7,6	7,4	6,2	32,2	31,4	27,6		
40	1787	1753	1733	5,4	5,0	3,6	28,5	24,0	23,3		
60	1725	1700	1680	4,9	4,6	3,5	16,2	15,5	14,7		
	ПЦ500-	ДО, доба	вка пемзі	ы с разм	ерами зе	ерен 0 <d< td=""><td><0,63 мм</td><td>-</td><td></td></d<>	<0,63 мм	-			
20	1750	1692	1682	7,4	7,0	6,1	35,5	32,8	32,4		
40	1656	1623	1606	6,8	6,3	6,2	25,1	23,1	21,7		
60	1511	1490	1469	4,6	4,2	3,7	13,7	12,8	12,5		
	ПЦ500-	-ДО, доба	вка пемзі	ы с разм	ерами зе	ерен 0 <d< td=""><td><1,25 mm</td><td></td><td></td></d<>	<1,25 mm				
20	1711	1684	1673	7,1	6,5	5,3	30,7	27,6	22,4		
40	1630	1607	1534	7,4	6,6	6,1	20,8	18,9	15,6		
60	1423	1392	1385	3,9	3,7	3,3	10,8	8,2	8,0		

Из исследований следует, что добавление пемзового песка фракции d<0,16 мм до 30 % от массы вяжущего значительно повышает жаростойкие свойства цементного камня, одновременно с этим предел прочности при изгибе возрастает, а при сжатии снижается незначительно. Это объясняется пуццолановыми свойствами мелкодисперсной фракции пемзового песка. Добавление в смесь пемзового песка большей фракции заметно снижает

предел прочности композита при сжатии, но при этом значительно улучшаются его жаростойкие характеристики, и снижается средняя плотность.

Таким образом, применение мелкодисперсных отходов пиления вулканической пемзы способствует снижению расхода вяжущего и повышению жаростойких характеристик бетонов на основе предложенных смесей.

Вместе с тем для рассева вулканической пемзы на фракции требуется специальное оборудование, это приводит к удорожанию композита, что эффективно при существенном повышении прочности фибробетона.

Из литературных источников следует, что для существенного улучшения физико-механических свойств бетона, в том числе жаростойких, эффективно использование дисперсное армирование волокнами [8].

Поэтому далее исследовалось влияние параметров армирования базальтовыми фибрами бетонной матрицы с применением вулканической пемзы на ее свойства.

Для определения влияния параметров армирования базальтовыми волокнами были проведены предварительные исследования, в результате выявлено, что при проценте дисперсного армирования $\mu = 1,2$ % по объему волокнами длиной 13 мм происходит максимальный прирост прочностных характеристик фибробетона.

Используя результаты предварительных исследований, был выполнен ротатабельный план эксперимента второго порядка типа правильного шестиугольника с центральными точками [9, 10]. Графическое представление такого плана показано на рис. 1.

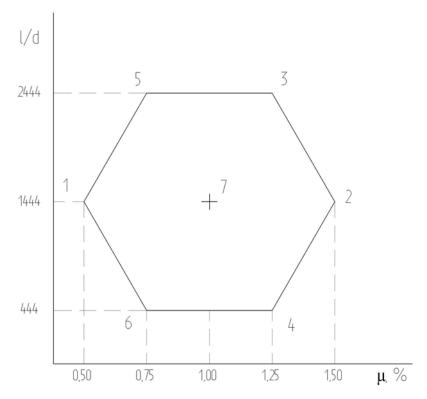


Рис. 1. План в виде правильного шестиугольника

Основные параметры фибрового армирования:

- X_l процент армирования по объему μ_v ;
- X_2 отношение длины волокон к их диаметру l/d .

Прочностные характеристики композита в возрасте 28 суток естественного твердения и нагрева до температуры 105 °C и 800 °C использовались как параметры оптимизации:

- Y_{I} предел прочности при сжатии $R_{cж}$, МПа;
- Y_2 предел прочности при изгибе R_{use} , МПа.

Из рис. 1 можно сделать вывод, что по плану для фактора X_1 требуется пять уровней варьирования переменных, а для фактора X_2 — всего три уровня:

- для $X_1 (-1; -0.5; 0; +0.5; +1);$
- для $X_2 (-0.87; 0; -0.87)$.

Матрица эксперимента представлена в табл. 2. За основные уровни варьирования для факторов выбраны значения величин, которые получены в ходе предварительных исследований.

Таблица 2 Матрица эксперимента

N/N		альные	Матрица эксперимента								
	\mathbf{x}_1	\mathbf{x}_1 \mathbf{x}_2		X_2	X_1^2	X_2^2	$X_1 * X_2$				
1	0,5	1444	-1	0	+1	0	0				
2	1,5	1444	+1	0	-1	0	0				
3	1,25	2444	+0,5	+0,87	+0,25	+0,75	+0,43				
4	1,25	444	+0,5	-0,87	+0,25	+0,75	-0,43				
5	0,75	2444	-0,5	+0,87	+0,25	+0,75	-0,43				
6	0,75	444	-0,5	-0,87	+0,25	+0,75	+0,43				
7	1,0	1444	0	0	0	0	0				

Соотношение компонентов в смеси и прочностные свойства бетонной матрицы для армирования базальтовыми фибрами приведены в табл. 3.

 Таблица 3

 Соотношение компонентов в смеси и свойства бетонной матрицы

No	Соотно компоненто мас	ов в смеси,	предел пр при сжати		предел прочности при изгибе (МПа)		
состава	портландц- емент	пемза фракции	температур		температура нагрева, °C		
	ПЦ500-ДО	0–1,25 мм	105	800	105	800	
1	2	3	4	5	6	7	
1	60	40	20,8	15,6	7,4	6,1	

Результаты экспериментов приведены в табл. 4, 5, 6 и 7.

Таблица 4 Результаты испытания образцов на сжатие в возрасте 28 суток естественного твердения и нагрева до температуры $105\,^{\rm o}{\rm C}$

N/N	Зна	Значения параллельных измерений функции отклика Y_1 , МПа						Диспер-	Коэф. вариации,	Ошибка
	y_1	y_2	y ₃	y_4	y ₅	y_6	МПа	сия S_j^2	%	Sj
1	25,67	25,96	25,55	25,70	25,78	25,74	25,73	0,02	0,01	0,14
2	24,81	24,79	24,73	24,73	24,66	24,98	24,78	0,01	0,00	0,11
3	25,36	25,11	25,48	25,49	25,23	24,47	25,19	0,15	0,02	0,38
4	24,35	24,56	24,22	23,95	24,10	23,98	24,19	0,05	0,01	0,23
5	26,43	26,50	26,31	26,25	26,31	26,44	26,37	0,01	0,00	0,10
6	24,73	24,79	25,10	24,98	24,79	24,60	24,83	0,03	0,01	0,18
7	27,13	27,01	27,20	27,07	26,88	26,94	27,04	0,01	0,00	0,12

Таблица 5 Результаты испытания образцов на изгиб в возрасте 28 суток естественного твердения и нагрева до температуры $105\,^{\circ}\mathrm{C}$

N/N	Зна		паралле ции отк:		измереі , МПа	Сред. знач. Y ₁ ,	Диспер- сия S _i ²	Коэф. вари-ации,	Ошибка	
	y_1	y_2	y ₃	y_4	y ₅	y_6	МПа	сия S _j	%	Sj
1	12,24	12,37	11,98	12,37	12,05	11,98	12,17	0,03	0,02	0,19
2	12,88	13,19	13,20	12,75	12,87	13,07	12,99	0,03	0,01	0,19
3	12,62	12,75	12,75	12,50	12,56	12,62	12,63	0,01	0,01	0,10
4	12,24	12,49	11,98	12,11	12,24	12,37	12,24	0,03	0,01	0,18
5	12,37	12,50	12,56	12,24	12,30	12,37	12,39	0,01	0,01	0,12
6	12,05	12,18	12,31	11,92	11,86	11,98	12,05	0,03	0,01	0,17
7	13,32	13,45	13,20	13,31	13,36	13,26	13,31	0,01	0,01	0,09

Таблица 6 Результаты испытания образцов на сжатие в возрасте 28 суток естественного твердения и нагрева до температуры $800\,^{\circ}\mathrm{C}$

	Зна	чения і	таралле	льных	измереі	Сред.	Диспер-	Коэф.	Ommerco	
N/N		функц	ции отк.	пика Y ₁	, МПа	знач. Y ₁ ,	$cus S_j^2$		Ошибка Sj	
	y_1	y_2	y_3	y ₄	y ₅	y_6	МПа	сия S _j	%	SJ
1	20,88	21,01	20,75	20,75	20,95	20,43	20,80	0,04	0,01	0,21
2	20,04	19,91	20,30	20,11	19,98	19,85	20,03	0,03	0,01	0,16
3	20,43	20,24	20,50	20,56	20,30	20,36	20,40	0,01	0,01	0,12
4	20,11	19,56	19,65	20,13	19,86	19,98	19,88	0,06	0,01	0,24
5	20,84	21,02	20,83	21,27	20,86	20,75	20,93	0,04	0,01	0,19
6	20,11	20,30	20,11	19,91	19,98	19,79	20,03	0,03	0,01	0,18
7	21,20	21,03	21,53	21,23	21,13	21,31	21,24	0,03	0,01	0,17

Таблица 7 Результаты испытания образцов на изгиб в возрасте 28 суток естественного твердения и нагрева до температуры $800\,^{\circ}\mathrm{C}$

N/N	Зна			льных : пика Y ₁	измереі , МПа	Сред. знач. Y ₁ ,	Диспер- сия S _i ²	Коэф. вари-ации,	Ошибка	
	y_1	y_2	y_3	y_4	y ₅	y_6	МПа	сия S _j	%	Sj
1	11,16	11,03	11,09	10,97	11,14	11,36	11,13	0,02	0,01	0,13
2	11,94	11,88	12,07	11,66	11,81	12,00	11,89	0,02	0,01	0,15
3	11,55	11,42	11,62	11,61	11,55	11,62	11,56	0,01	0,01	0,08
4	11,23	11,36	11,29	11,09	11,04	11,16	11,20	0,01	0,01	0,12
5	11,36	11,49	11,55	11,23	11,16	11,22	11,34	0,03	0,01	0,16
6	11,03	10,97	11,03	11,14	10,99	11,03	11,03	0,00	0,01	0,06
7	12,20	12,33	12,07	12,27	12,14	12,10	12,20	0,01	0,01	0,10

В результате проведенного исследования и обработки полученных результатов были выведены следующие уравнения регрессии фибробетонного композита в возрасте 28 суток, в условиях естественного твердения и нагрева до температуры 105 °C в кодированном виде:

$$Y_1 = 27,04 - 0,92X_1 + 0,73X_2 - 1,32X_1^2 - 2,08X_2^2 - 0,32X_1X_2;$$

 $Y_2 = 13,3 + 0,42X_1 + 0,21X_2 - 0,94X_1^2 - 0,99X_2^2 + 0,32X_1X_2;$

На основе представленных выше зависимостей были построены поверхности отклика (рис. 2).

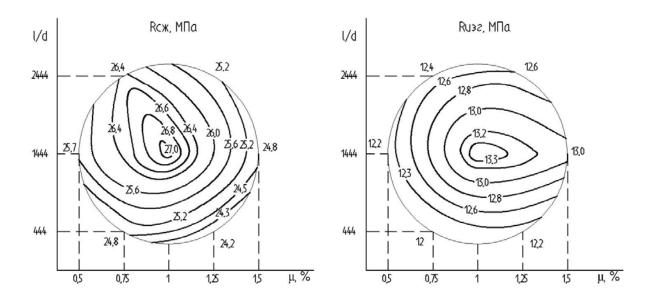


Рис. 2. Поверхности отклика. Здесь: R_{csc} — предел прочности при сжатии, МПа; R_{usc} — предел прочности при изгибе, МПа; l/d — отношение длины волокон к их диаметру; μ — процент армирования по объему

В результате проведенного исследования и обработки полученных результатов были выведены следующие уравнения регрессии фибробетонного композита в возрасте 28 суток, в условиях естественного твердения и нагрева до температуры 800 °С в кодированном виде:

$$Y_1 = 21,23 - 0,48X_1 + 0,4X_2 - 0,58X_1^2 - 1,04X_2^2 - 0,22X_1X_2;$$

 $Y_2 = 12,2 + 0,39X_1 + 0,19X_2 - 0,88X_1^2 - 0,93X_2^2 + 0,04X_1X_2;$

На основе представленных выше зависимостей были построены поверхности отклика (рис. 3).

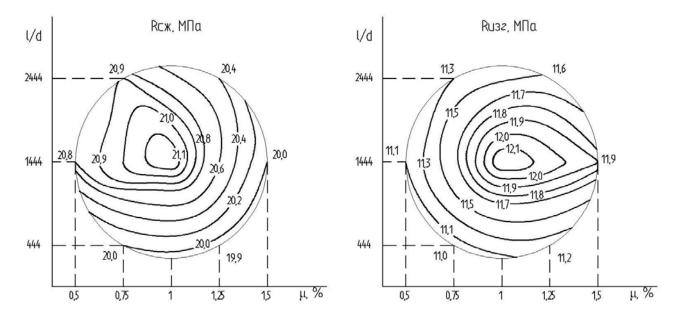


Рис. 3. Поверхности отклика. Здесь: $R_{c\infty}$ – предел прочности при сжатии, МПа; R_{use} – предел прочности при изгибе, МПа; l/d – отношение длины волокон к их диаметру; μ – процент армирования по объему

Результаты исследований показали, что в области плана с $\mu_{\nu} = 0.85...1.15\,\%$ и 1/d = 1444 отмечаются наибольшие значения предела прочности на сжатие и изгиб. Увеличение процента армирования базальтовыми волокнами матрицы приводит к уменьшению прочностных характеристик композита, что обусловлено ухудшением их структуры.

Эксперименты показали, что разработанные композиты имеют меньшую усадку при воздействии температуры 800 °C по сравнению с исходной бетонной матрицей, усадка снижается с 0,7 до 0,5 %. Кроме того, дисперсное армирование бетонной матрицы базальтовыми волокнами обеспечивает меньшее снижение прочностных характеристик при воздействии высоких температур, т.е. лучшую сохранность композита.

Литература

- 1. Руководство по выполнению огнезащитных и теплоизоляционных штукатурок механизированным способом. М.: Стройиздат, 1977. 46 с.
 - 2. Journal of Materials Science Letters. 1987. Vol. 6. № 5. PP. 562–564.
- 3. Steel Strategy and Fire Protection. Internotional Construction. 1972. Vol. 11. № 1. PP. 13 15.
- 4. Некрасов К.Д., Масленникова М.Г. Легкие жаростойкие бетоны на пористых заполнителях. М.: Стройиздат, 1982. 152 с.
- 5. Ахматов М.А. Эффективность применения местных строительных материалов и бетона. Нальчик: Эльбрус, 1986. 160 с.
- 6. Хежев Х.А., Хежев Т.А., Кимов У.З., Думанов К.Х. Огнезащитные и жаростойкие композиты с применением вулканических горных пород // Инженерный вестник Дона, 2011. №4 URL: ivdon.ru/magazine/archive/n4y2011/710.
- 7. Хежев Т.А., Жуков А.З., Хежев Х.А. Огнезащитные и жаростойкие вермикулитобетонные композиты с применением вулканического пепла и пемзы // Инженерный вестник Дона, 2015. №2 URL: ivdon.ru/ru/magazine/archive/n2y2015/2902
- 8. Перфилов В.А. Легкий жаростойкий фибробетон // Известия вузов. Строительство. 2008. № 9. С. 23–25.
- 9. Карпов В.В. Математическая обработка эксперимента и его планирование. М.: АСВ; СПб.: СПбГАСУ, 1998. 100 с.
- 10. Налимов В.В. Статистические методы планирования экстремальных экспериментов. М.: Наука, 1965. 340 с.

References

1. Rukovodstvo po vypolneniyu ognezashchitnykh i teploizolyatsionnykh shtukaturok mekhanizirovannym sposobom [Management on the fulfillment of

fire-retardant and thermal insulation plasterings in a mechanized manner]. M.: Stroyizdat, 1977. 46 p.

- 2. Journal of Materials Science Letters. 1987. Vol. 6. № 5. PP. 562–564.
- 3. Steel Strategy and Fire Protection. Internotional Construction. 1972. Vol. 11. № 1. PP. 13 15.
- 4. Nekrasov K.D., Maslennikova M.G. Legkie zharostoykie betony na poristykh zapolnitelyakh [Light heat-resistant concrete on the porous fillers]. M.: Stroyizdat, 1982. 152 p.
- 5. Akhmatov M.A. Effektivnost' primeneniya mestnykh stroitel'nykh materialov i betona [The effectiveness of the use of local building materials and concrete]. Nal'chik: El'brus, 1986. 160 p.
- 6. Khezhev Kh.A., Khezhev T.A., Kimov U.Z., Dumanov K.Kh. Inženernyj vestnik Dona (Rus), 2011. №4 URL: ivdon.ru/magazine/archive/n4y2011/710.
- 7. Khezhev T.A., Zhukov A.Z., Khezhev Kh.A. Inženernyj vestnik Dona (Rus), 2015. №2 URL: ivdon.ru/ru/magazine/archive/n2y2015/2902.
 - 8. Perfilov V.A. Izvestiya vuzov. Stroitel'stvo. 2008. № 9. pp. 23–25.
- 9. Karpov V.V. Matematicheskaya obrabotka eksperimenta i ego planirovanie [The mathematical processing of the experimental and planning]. M.: ASV; SPbGASU, 1998. 100 p.
- 10. Nalimov V.V. Statisticheskie metody planirovaniya ekstremal'nykh eksperimentov [Statistical methods of planning of extreme experiments]. M.: Nauka, 1965. 340 p.