Планирование трудового ресурса при формировании производственных программ строительных организаций

А.В. Ищенко, М.Н. Данилочкин, И.С. Тарасенко

Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский московский государственный строительный университет» (НИУ МГСУ)

Аннотация:

Введение. Планирование имеет важную функцию на каждом этапе реализации Структурированный процесс деятельности строительного проекта. строительной организации зависит, как правило, от грамотного планирования. Своевременно разработанный и оптимизированный план (производственная программа) позволяет максимально выгодный выбор экономических осуществить И технологически эффективных решений. Разработку производственных программ в строительных организациях зачастую выполняют планово-экономический, планово-производственный и производственно-технический отдел.

Материалы и методы: в современном строительстве активно используются различные программные комплексы, дающие ряд упрощающих работу возможностей. К данным программам относятся: MS Project, 1C, Project Expert, Oracle Primavera, Программный комплекс «СтройКонтроль», «Алтиус-Управление строительством». Вследствие их использования происходит сокращение времени и затрат труда на организационнотехнологическое проектирование и контроль над строительными процессами, упрощение ведения строительной документации и анализ с дальнейшим прогнозированием возможного потенциала строительной организации на определенный отрезок времени.

Результаты: в данной статье авторы рассмотрели процесс планирования трудовых ресурсов на примере 3 генподрядных организаций. Имея отчетно-техническую документацию по объектам рассматриваемых генподрядчиков, авторы смогли вывести численность рабочих в процессе возведения зданий. Проанализировав имеющуюся статистику, составили ряд графиков, показывающих движение монолитных бригад на объектах. По получившимся графикам авторы определили среднее отклонение фактического количества монолитчиков от планового.

Выводы: авторами произведён анализ динамики строительства характерных объектов разных генеральных подрядных организаций с указанием разницы значений запланированного (прогнозируемого) и фактического трудового ресурса на объектах, представлены последствия отклонений трудового ресурса и рассмотрены возможные решения данной проблематики. Также в данной статье авторами рассмотрен ряд наиболее используемых в строительной сфере программных комплексов для автоматизации процессов планирования трудового ресурса, произведен их анализ и сравнение по основным возможностям и характеристикам.

Ключевые слова: программные комплексы в планировании, текущее планирование, трудовой ресурс, систематизация флуктуации трудовых ресурсов, автоматизация планирования, производственная программа, планирование трудового ресурса.

ВВЕДЕНИЕ

В строительных организациях, для упрощения и оптимизации процесса планирования часто используются различные программные комплексы [1]. Они позволяют обеспечить максимальную взаимоувязку между разными структурными подразделениями организации, строительными процессами, необходимыми ресурсами на строительной площадке [2].

Таблица №1 Анализ и сравнение программных комплексов и возможностей их инструментария моделирования строительных процессов [3 - 5].

	PI	НОЙ Н И УКИХ Н В Н И		BbIX		Инструментарий моделирования			_				
№ по порядку	Название программы	Формирование отчетной документации	контроль трудовых и материально-технических ресурсов	Контроль сроков строительства	Контроль персонала на объекте	Контроль качества	Интеграция с другими программами	Составление финансовых отчетов	Гибкая настройка отчетов	Линейная модель	Циклограмма	Сетевая модель вершина-событие	Сетевая модель вершина-работа
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	MS Project	+	+	+	-	-	+/-	+	-	+	-	-	+
2	Project Expert	+	+	+	-	-	+/-	+	-	+	ı	-	-
3	1C	+	+	+	-	-	+	+	-	+	-	-	-
4	Oracle Primavera	+	+	+	-	-	+/-	+	-	+	-	-	-

1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	«Алтиус»	+	+	+	1	1	+	+	1	+	-	+	+
6	«Строй Контроль»	+	+	+	+	+	+	+	1	+	-	•	•

При важной задачей планирования, ЭТОМ TOM числе, автоматизированного за счет указанных компьютеризированных средств, гармонизация значений численности является трудового pecypca, приведенного Проекте организации строительства (ΠOC) , Проекте производства работ (ППР), недельно-суточными графиками и реальными строительной возможностями данной организации [6]. Серьезным дестабилизирующим фактором в этом отношении является сама по себе совокупности необходимость взаимоувязки объектов годовой (или двухлетней) программы строительной организации [7], так как плановым отделам приходится обеспечивать выполнение реализации целого портфеля строительных проектов, также обеспечивая при этом максимально полную и равномерную загрузку внутреннего имеющегося ресурса организации – как трудового, так и ресурса механизации (парка строительных машин) [8-9].

МАТЕРИАЛЫ И МЕТОДЫ

Для анализа действительной ситуации на строительных площадках было проведено статистическое исследование результатов планирования движения рабочих для установления действительных отклонений от плановых значений – в настоящей статье приведены, для примера, данные по трем генеральным подрядным организациям. В таблицах представлены общие данные об рассматриваемых организациях и объектах, а также сроках строительства и площади рассматриваемых объектов.

Таблица №2

Описание рассматриваемых организаций.

No	Характеристика	Значение
1	Мощность	Крупные и средние
2	Ведущий процесс работ	Устройство монолитных конструкций
3	Статус организаций, выполняющих работы	Генподряд

Таблица №3

Описание, рассматриваемых объектов.

No	Характеристика	Значение		
1	Конструкционная схема	Монолитный каркас		
2	Местоположение	г. Москва и Московская область		
3	Функциональное	Непроизводственные здания (Жилые,		
	назначение	административные)		
4	Этажность	От 3-х этажей		

Таблица №4

Генподрядчик №1.

Объект	Общая	Начало работ	Окончание
	площадь, M^2		работ
ЖК 1	146 214	январь 2015	июль 2018
ЖК 2	134 378	январь 2017	март 2019
ЖК 3	99 062	январь 2017	июнь 2018

Таблица №5

Генподрядчик №2

Объект	Общая	Начало работ	Окончание
	площадь, M^2		работ
ЖК 1	135 305	январь 2018	2019
ЖК 2	106 598	июнь 2018	2020
ЖК 3	238 824	апрель 2018	2020

Таблица №6

Генподрядчик	№ 3
--------------	------------

Объект	Общая	Начало работ	Окончание
	площадь, M^2		работ
ЖК 1	89 999	апрель 2018	2020
ЖК 2	63 500	ноябрь 2017	2019
ЖК 3	97 675	январь 2018	2020

На графиках, представленных ниже (рис. 1-12), разобрана численность ведущего потока по устройству монолитных железобетонных конструкций на соответствующих этапах возведения объектов.

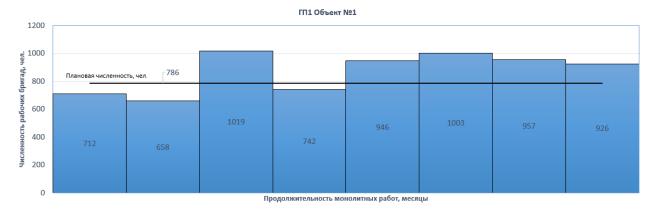


Рис.1. – Генподрядчик №1-1.

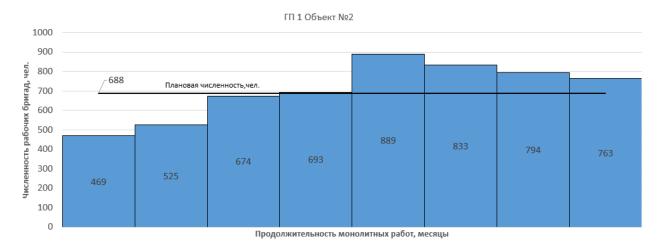


Рис.2. – Генподрядчик №1-2.

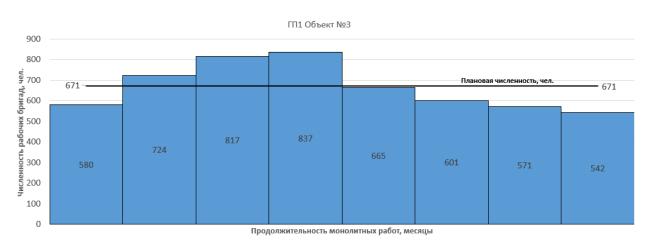


Рис.3. – Генподрядчик №1-3.

Рис.4. – Суммарный график для генподрядчика №1.

Рис.5. – Генподрядчик №2-1.

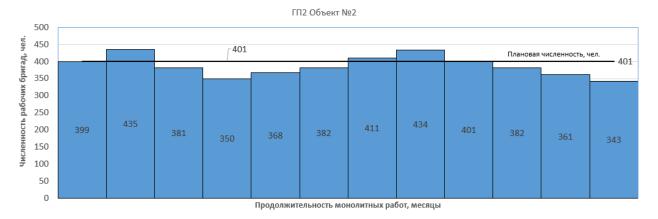


Рис.6. – Генподрядчик №2-2.

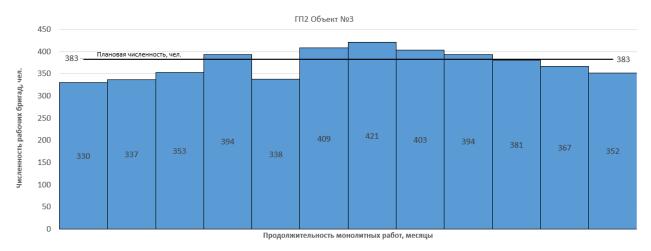


Рис.7. – Генподрядчик №2-3.

Рис.8. – Суммарный график для генподрядчика №2.

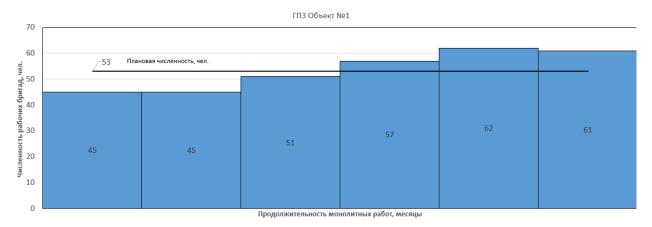


Рис.9. – Генподрядчик №3-1.

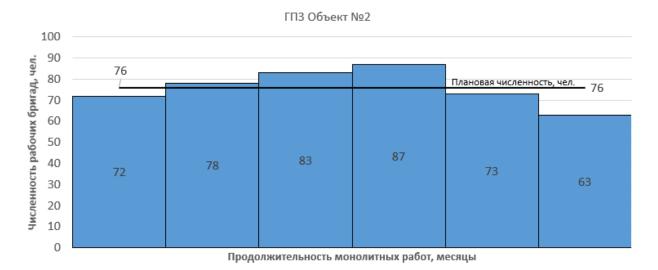


Рис.10. – Генподрядчик №3-2.

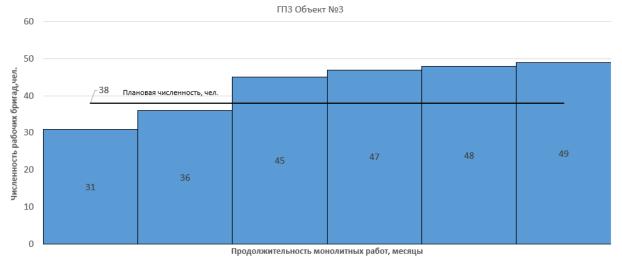


Рис.11. – Генподрядчик №3-3.

Рис.12. – Суммарный график для генподрядчика №3.

Таблица №7 Анализ отклонения фактического количества монолитчиков от планового.

		Среднее
		отклонение,
		%
ГП	объект 1	10,7
1	объект 2	2,5
	объект 3	0,6
ГП 2	объект 1	0,5
	объект 2	3,4
	объект 3	2,5
ГП	объект 1	0,9
3	объект 2	0
	объект 3	12,3

РЕЗУЛЬТАТЫ И ИССЛЕДОВАНИЯ

В процессе анализа работ подрядных организаций по устройству монолитных железобетонных конструкций выявлено ожидаемое отклонение численности трудового ресурса относительно плановых показателей. При этом данное процентное отношение колеблется в определенном пределе.

Исходя из дополнительного статистического обоснования, можно вывести оптимальный порог значения отклонения фактической мощности расчётной численности рабочих бригад. Для крупных организаций – не более 15% [10]. В данном случае практика реализации строительных объектов доказывает отсутствие необходимости в оптимизации действий относительно объектов производственных программ, так как эти колебания могут резервами нивелироваться внутренними производственными крупных Учет подобных «флуктуационных организаций. коридоров» автоматизированном планировании и периодической оптимизации графиков движения трудовых ресурсов с применением различных программных комплексов позволяет несколько расширить диапазон принимаемых решений производственно-техническим, плановым отделами или отдельными специалистами по организации строительства, так как для определенного типа организаций по уровню исходной мощности сформированный «коридор безопасности» дает возможность регулирования роста производительности и устранения простоев в заданном диапазоне значений.

ЗАКЛЮЧЕНИЕ

Делая вывод по работе, можно выделить несколько проблем, возникающих планировании трудовых при ресурсов: существование потребности формализованной универсальной методике расчета численного и квалифицированного состава трудового ресурса на объект в и ПОС, возникновение неконтролируемых флуктуаций составе ППР численности трудового pecypca ПОД действием дестабилизирующих факторов. Существующие проблемы свою очередь приводят значений, нерелевантности расчетных сложности подрядчика при формировании ОТД, несистемному передислоцированию ресурсов между объектами и работами, снижению производительности рабочих, а также неоптимальной загрузке производственных подразделений. Разработка нормативного документа с методикой и разработка комплексного алгоритма оптимизации с учетом «незначимых» допусков флуктуации ресурсного поля решат ряд перечисленных проблем в планировании трудового ресурса.

Литература

- 1. Лапидус А.А., Чередниченко Н.Д. Актуальные вопросы планирования строительного производства в современных условиях // Научное обозрение, 2015, № 21, С. 338-341.
- 2. Гинзбург А.В., Лобырева Я.А., Семернин Д.А. Системный подход при создании комплексных автоматизированных систем управления и проектирования в строительстве // Научное обозрение, 2015, №16, С.461-464.
- 3. Пабло Мартинес, Мохаммед Аль-Хусейн, Рафик Ахмад, Наукометрический анализ и критический обзор компьютерных программ для строительства // Автоматизация в строительстве, 2019, № 102947. С. 107.
- 4. Лапидус А.А. Техническое регулирование в строительстве: современные аспекты развития. // Техническое регулирование. Строительство, проектирование и изыскания, 2011, № 5, С. 10-13.
- 5. Лапидус А.А. Актуальные проблемы организационнотехнологического проектирования. // Технология и организация строительного производства, 2013, № 3 (4), С. 15.
- 6. Олейник П., Юргайтис А., Оптимизация решений годовой программы строительства. // MATEC Web of Conferences, 2017, С. 117., № 00130. RSP 2017-XXVI R-S-P Семинар 2017 Теоретические основы гражданского строительства. DOI: 10.1051/matecconf/201711700130.
- 7. Олейник П., Юргайтис А., Метод формирования решений по некритическим мероприятиям при подготовке и оптимизации годовой программы организаций строительного комплекса. // MATEC Web of Conferences, \mathbb{N}_{2} 05010, 2018.

DOI: 10.1051/matecconf/201819305010.

- 8. Кужин М.Ф., Галеева Р.Г. Организация и планирование строительного производства при возведении комплексов зданий и сооружений // Инженерный вестник Дона, 2021, №5. URL: ivdon.ru/ru/magazine/archive/n5y2021/6955.
- 9. Побегайлов О.А., Тельман А.Н., Шилов С.В. Стратегическое планирование в строительной организации // Инженерный вестник Дона, 2020, №9. URL: ivdon.ru/ru/magazine/archive/n9y2020/6615.
- 10. Цуцуми Дайсуке, Гюлай Давид, Ковач Андраш, Типари Бенс, Фудзита Кикуо. Совместная оптимизация технологического плана и производственного плана в высокоточной многопродуктовой сборке // Журнал производственных систем, 2020, С. 336-347.

References

- 1. Lapidus A.A., Cherednichenko N.D. Nauchnoe obozrenie, 2015, № 21, pp. 338-341.
- 2. Ginzburg A.V., Loby`reva Ya.A, Semernin D.A. Nauchnoe obozrenie, 2015, №16, pp. 461-464.
- 3. Pablo Martines, Moxammed Al`-Xusejn, Rafik Axmad. Avtomatizaciya v stroitel`stve, 2019, № 102947. p. 107.
- 4. Lapidus A.A. Stroitel`stvo, proektirovanie i izy`skaniya, 2011, № 5, pp. 10-13.
- 5. Lapidus A.A. Texnologiya i organizaciya stroitel`nogo proizvodstva, 2013, № 3 (4), p. 15.
- 6. Olejnik P., Yurgajtis A. MATEC Web of Conferences, 2017, p. 117, № 00130. RSP 2017-XXVI R-S-P Seminar 2017. Teoreticheskie osnovy` grazhdanskogo stroitel`stva. DOI: 10.1051/matecconf/201711700130.
- 7. Olejnik P., Yurgajtis A. MATEC Web of Conferences, № 05010, 2018. DOI: 10.1051/matecconf/201819305010.

- 8. Kuzhin M.F., Galeeva R.G. Inzhenernyj vestnik Dona, 2021, №5. URL: ivdon.ru/ru/magazine/archive/n5y2021/6955.
- 9. Pobegajlov O.A., Tel`man A.N., Shilov S.V. Inzhenernyj vestnik Dona, 2020, №9. URL: ivdon.ru/ru/magazine/archive/n9y2020/6615.
- 10. Czuczumi Dajsuke, Gyulaj David, Kovach Andrash, Tipari Bens, Fudzita Kikuo. Zhurnal proizvodstvenny`x sistem, 2020 g., pp. 336-347.