Математическое моделирование распределенного реестра в сфере аренды недвижимости как сети массового обслуживания

В.А. Евсин, С.Н. Широбокова, В.А. Евсина, Е.А. Продан

Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова, Новочеркасск

Аннотация: в данной статье представлена математическая модель распределенного реестра как сети массового обслуживания. Рассмотрены основные компоненты данной сети, а также их формальное представление. Визуализирована модель peer-to-peer сети, определен вектор состояния сети, а также определены ограничения пространства состояний. После чего были представлены законы распределения отдельных потоков и времени обслуживания. Кроме того, были определены элементы конструирования инфинитезимальной матрицы. На основании полученных данных была произведена имитационная модель данного процесса. Результаты проведения имитационного моделирования были проанализированы и выбраны наиболее оптимальные параметры. Ключевые слова: распределенный реестр, blockchain, Марковские процессы, системы массового обслуживания, математическое моделирование, имитационное моделирование, теория вероятностей, теория случайных процессов.

Развитие информационных процессов в вычислительных системах в настоящее время привело к созданию сетей распределенного реестра: систем, решающих задачу о византийских генералах. В данной работе представлено математическое моделирование *peer-to-peer* сети, основанной на принципах платформы для формирования распределенного реестра *Corda* [1]. Одним из вариантов использования технологии распределенных реестров является сфера аренды недвижимости [2,3]. Актуальность данной работы обусловлена все возрастающей популярностью систем распределенного реестра, в связи с чем необходимо провести оценку количественных параметров данной сети и определить наиболее оптимальные параметры.

Общая модель сети представляет собой *peer-to-peer* сеть, в которой каждый участник имеет m_s клиентских приложений ($s = \overline{1,R}$, где R – количество серверов в сети), сервер приложения S_s , ноду N_s (сервер для общения с другими узлами сети). Данная модель представлена на рис. 1.

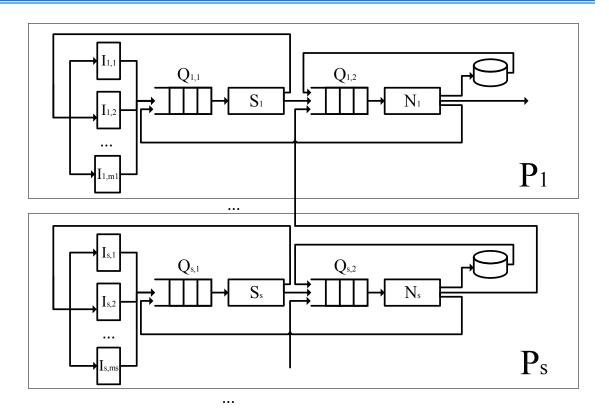


Рис. 1. – Модель взаимодействия узлов в закрытом распределенном реестре

Состояние сети задается вектором (i_{11} ,..., i_{1R} , i_{21} ,..., i_{2R}), где i_{Is} – количество заявок, находящихся в очереди и на обработке сервером s-го участника сети, i_{2s} – количество заявок, находящихся в очереди и на обработке нодой s-го участника сети. Полное пространство состояний для данной модели сети имеет вид: $i_{1s} = \overline{0, m_s}$; $i_{2s} = \overline{0, \sum_i m_i}$; $i = \overline{1, R}$. Ограничением данной модели является условие, что общее число заявок от s-го узла сети на сервере и ноде не может быть больше, чем общее число клиентских сети, т.е. $i_{1s} + i_{2s} \leq \overline{0, \sum_i m_i}$. устройств данного узла Элементы $Q = \|q_{i11,...i1R,...,j21,...,j2R}\|$ представляют инфинитезимальной матрицы интенсивности перехода из состояния $(i_{II},...,i_{IR},i_{2I},...,i_{2R})$ в состояние $(j_{II},...,i_{IR},i_{2I},...,i_{2R})$ $j_{1R},\ j_{21}\ ,...,\ j_{2R})$ за бесконечно малый промежуток времени Δt . Диагональные элементы матрицы Q равны сумме элементов строки, взятых со знаком Предполагается, «минус». что длительность активного состояния Таблица № 1 Элементы конструирования инфинитезимальной матрицы

Событие и качественное описание условия	Формальное представление условия	Интенсивность переходов
1	2	3
Формирование заявки на <i>s</i> -м узле сети	$j_{11} = i_{11};; j_{1s} = i_{1s} + 1;;$ $j_{21} = i_{21};; j_{2s} = i_{2s};$	$(m_s-i_{1s}-i_{2s1})*\lambda_s$
Окончание обработки заявки на сервере <i>s</i> -го узла сети, после чего заявка отправляется клиентскому устройству	$j_{11} = i_{11};; j_{1s} = i_{1s} - 1;;$ $j_{11} = i_{11};; j_{2s} = i_{2s};$	$p_{11s}*\mu_{1s}$
Окончание обработки заявки на сервере <i>s</i> -го узла сети, после чего заявка отправляется на ноду	$j_{11} = i_{11};; j_{1s} = i_{1s};;$ $j_{11} = i_{11};; j_{2s} = i_{2s} + 1;$	$p_{12s} * \mu_{1s}$
Получение заявки s -м узлом сети от l -го узла сети	$j_{11} = i_{11};; j_{1s} = i_{1s} + 1;;$ $j_{11} = i_{11};; j_{2s} = i_{2s} - 1;$	λ_l
Окончание обработки заявки на ноде, после чего заявка отправляется на сервер	$j_{11} = i_{11};; j_{1s} = i_{1s} + 1;;$ $j_{11} = i_{11};; j_{2s} = i_{2s} - 1;$	$p_{22s} * \mu_{2s}$
Окончание обработки заявки на ноде, после чего заявка обращается к базе данных	$j_{11} = i_{11};; j_{1s} = i_{1s};;$ $j_{11} = i_{11};; j_{2s} = i_{2s} - 1;$	$p_{23s} * \mu_{2s}$

Продолжение таблицы № 2

1	2	3
Окончание обработки заявки в базе данных	$j_{11} = i_{11};; j_{1s} = i_{1s};;$ $j_{11} = i_{11};; j_{2s} = i_{2s} + 1;$	η_s
Окончание обработки заявки на ноде, после чего заявка отправляется к l -му узлу сети	$j_{11} = i_{11};; j_{1s} = i_{1s};;$ $j_{11} = i_{11};; j_{2s} = i_{2s}-1;$	$p_{21sl}*\mu_{2s}$
Пребывание сети в текущем состоянии	$j_{11} = i_{11};; j_{1s} = i_{1s};;$ $j_{11} = i_{11};; j_{2s} = i_{2s};$	$-\sum_{i1\downarrow\dots i1R,\dots j2\downarrow\dots j2R} q_{i1\downarrow\dots i1R,\dots j2\downarrow\dots j2R}$
Прочие условия		0

Подробнее о математических моделях распределенных систем в [4-9].

В таблице №1 представлены следующие вероятности:

- p_{IIs} вероятность того, что заявка из сервера попадет к клиентским устройствам;
 - p_{12s} вероятность того, что заявка из сервера попадет на ноду;
 - p_{21ls} вероятность того, что заявка из s-й ноды попадет на l-ю ноду;
 - p_{22s} вероятность того, что заявка из s-й ноды попадет на сервер;
- $-p_{23s}$ вероятность того, что заявка из s-й ноды попадет в базу данных. Условие нормировки для данных вероятностей имеет вид: $p_{11s} + p_{12s} = \sum_{h} p_{12hs} + p_{22s} + p_{23s} = 1$. Ввиду большой размерности Риманова фазового пространства количество вариаций состояний сети нецелесообразно определять математически, поэтому используется имитационная модель.

Постановка задачи имитационного моделирования: определить вероятность нахождения в фазе пиковой нагрузки очередь перед сервером и перед нодой для участника сети. Определить минимальный размер очереди перед сервером и перед нодой, при которой вероятность загруженности соответствующей очереди будет менее 50%. В качестве дисциплины обслуживания *FIFO*. Условия эксперимента приведены в таблице №2. Для проведения имитационного моделирования используется среда *AnyLogic* [10].

Таблица № 2

Условия эксперимента

Название условия	Количественная
	характеристика
Количество участников сети	3
Количество клиентских устройств рассматриваемой СМО	4
Максимальный размер очереди перед сервером	11
Средняя длительность активного состояния	3
пользователей	
Вероятность отправления заявки на клиентское	0,25
устройство из сервера	
Вероятность отправления заявки на сервер из ноды	0,43
Вероятность отправления заявки на $s+1$ — ю ноду из	0,27
текущей <i>s</i> -й ноды	
Размер очереди на ноде	7
Время обработки заявки на сервере	5
Время обработки заявки на ноде	7
Время выполнения эксперимента	500

Графики изменения загруженности очередей в ходе проведения эксперимента представлены на рис. 1. На основании проведенного эксперимента были получены результаты по оптимальному количеству очередей, представленные в таблице №3.

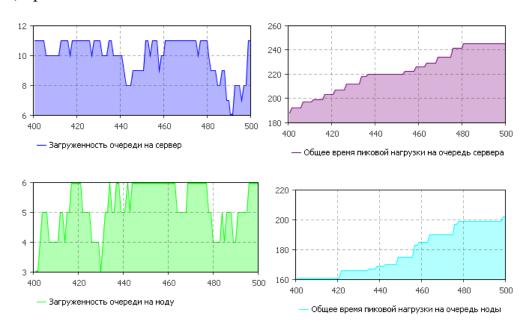


Рис. 1. – Графики изменения параметров загруженности очередей

Таблица № 3

Результаты эксперимента

Название условия	Количественная
	характеристика
Средняя загруженность очереди перед сервером	9.179
Общее время макс. загруженности очереди перед сервером	245
Вероятность нахождения очереди перед сервером в	0.49
состоянии максимальной загруженности	
Средняя загруженность перед нодой	4.151
Общее время макс. загруженности очереди перед нодой	202
Вероятность нахождения очереди перед нодой в состоянии	0.404
максимальной загруженности	

Дальнейшие исследования будут направлены на уточнение разработанной модели для более качественного соответствия ее реальной работе сети распределенного реестра.

Литература

- 1. Нараевский О.А., Евсин В.А. Формализованный анализ функциональной полноты платформ распределённых реестров // Фундаментальные основы, теория, методы и средства измерений, контроля и диагностики: материалы 19-ой Междунар. молодежной науч.-практ. конф., Новочеркасск, 27-28 февраля 2018 г.— Новочеркасск: Лик, 2018.— С. 396-404
- 2. Евсин В.А., Широбокова С.Н., Продан Е.А. Использование технологии распределенных реестров при проектировании информационной системы «Аренда недвижимости» с применением искусственных нейронных сетей // Инженерный вестник Дона. 2018. №1. URL: ivdon.ru/ru/magazine/archive/n1y2018/4655
- 3. Евсин В.А., Продан Е.А., Евсина В.А. Аспекты проектирования информационной системы по аренде недвижимости с использованием технологии распределенных реестров // Фундаментальные основы, теория, методы и средства измерений, контроля и диагностики: материалы 19-ой

Междунар. молодежной науч.-практ. конф., Новочеркасск, 27-28 февраля 2018 г. – Новочеркасск: Лик, 2018.– С. 318-323.

- 4. Черноморов Г.А. Теория принятия решений: Учебное пособие / Юж.-Рос. гос. техн. ун-т. - 3-е изд. перераб. и доп. - Новочеркасск: Ред.журн.-«Изв. Вузов. Электромеханика», 2005. - 448с.
- 5. Скоба А.Н., Состина Е.В. Математическая модель оптимального размещения распределенной базы данных по узлам ЛВС на базе файлсерверной архитектуры. // Инженерный вестник Дона. 2015. № 2. URL: ivdon.ru/ru/magazine/archive/n2y2015/2881
- 6. Gross D., Harris C. M. Fundamentals of Queueing Theory. Fourth edition N.-Y.: Wiley, 2008. 528p.
- 7. Chakka R., Harrison P.G. A Markov modulated multi-server queue with negative customers –Ihe MM CPP/GE/c/LG-queue // Acta Informatika/-2001.-v.37. pp. 785-799.
- 8. Хемди А. Таха Введение в исследование операций. 7 изд. М.: Вильямс, 2005. 912 с.
- 9. Вентцель Е. С. Исследование операций. Задачи, принципы, методология. М.: Юстиция, 2018. 192 с.
- 10. Акопов А.С. Имитационное моделирование. М.: Юрайт, 2015. 389 с.

References

- 1. Naraevskij O.A., Evsin V.A. Fundamental'nye osnovy, teorija, metody i sredstva izmerenij, kontrolja i diagnostiki: materialy 19-oj Mezhdunar. molodezhnoj nauch.-prakt. konf., Novocherkassk, 27-28 fevralja 2018. Novocherkassk: Lik, 2018. P. 396-404
- 2. Evsin V.A., Shirobokova S.N., Prodan E.A. Inženernyj vestnik Dona (Rus). 2018. №1. URL: ivdon.ru/ru/magazine/archive/n1y2018/4655

- 3. Evsin V.A., Prodan E.A., Evsina V.A. Fundamental'nye osnovy, teorija, metody i sredstva izmerenij, kontrolja i diagnostiki: materialy 19-oj Mezhdunar. molodezhnoj nauch.-prakt. konf. Novocherkassk, 27-28 fevralja 2018. Novocherkassk: Lik, 2018. P. 318-323.
- 4. Chernomorov G.A. Teorija prinjatija reshenij [Decision making theory]: Uchebnoe posobie Juzh.-Ros. gos. tehn. un-t. 3-e izd. pererab. i dop. Novocherkassk: Red.zhurn. «Izv. Vuzov. Jelektromehanika», 2005. 448p.
- 5. Skoba A.N., Sostina E.V. Inženernyj vestnik Dona (Rus). 2015. № 2. URL: ivdon.ru/ru/magazine/archive/n2y2015/2881
- 6. Gross D., Harris C. M. Fundamentals of Queueing Theory. Fourth edition N.-Y.: Wiley, 2008. 528p.
- 7. Chakka R., Harrison P.G. A Markov modulated multi-server queue with negative customers Ihe MM CPP/GE/c/LG-queue Acta Informatika. 2001. v.37. pp. 785-799.
- 8. Hemdi A. Taha Vvedenie v issledovanie operacij. [Operations Research: An Introduction] 7 izd. M.: Vil'jams, 2005. 912 p.
- 9. Ventzel E. S. Issledovanie operacij. Zadachi, principy, metodologija. [Operations research: tasks, principles, methodology] M.: Justicija, 2018. 192 p.
- 10. Akopov A.S. Imitacionnoe modelirovanie. [Simulation modeling] M.: Jurajt, 2015. 389 p.