Перспективы применения композитных материалов при обустройстве месторождений

Э.С. Караев, А.Б. Акишев

Тюменский Индустриальный Университет

Аннотация: Каждый год для реализации любого нефтегазового проекта в условиях Крайнего Севера крупнейшие нефтегазовые компании применяют новые технологии. Это связано с попытками снизить стоимость обустройства и эксплуатации месторождения. В статье раскрываются преимущества применения композитных материалов при строительстве нефтяных и газовых месторождений. Приведена стоимость применения композитных и металлических опор. Показаны основные объекты, строительство которых возможно с применением композитов, а также сделаны выводы по масштабному внедрению данного материала при строительстве.

Ключевые слова: композитные материалы, обустройство месторождений, строительство, снижение трудоемкости, уменьшение сроков строительства.

В связи с увеличением стоимости стали на рынке РФ и улучшением технологии производства композитных материалов возникает необходимость пересмотреть отношение к композитным материалам и внедрению новых инновационных технологий при обустройстве месторождений.

Цель статьи - провести сравнительный анализ между традиционными методами обустройства с помощью стальных конструкций и обустройством с применением композитных материалов.

Объектом исследований являются данные нефтегазовых компаний и компаний производителей.

Методы исследования: сбор и анализ полученной информации при участии в проекте INкорпорация.

Обустройство месторождений на севере Тюменской области имеет свою специфику по сравнению с традиционным строительством в черте города. А именно:

- 1) Отдаленность места строительства от крупных городов.
- 2) Сложности в транспортировке строительных материалов в связи со слабыми грунтами.

- 3) Повышенная стоимость строительно-монтажных работ на объектах в связи с тяжелыми условиями на севере.
- 4) Необходимость в максимально сжатые сроки построить и сдать объект в связи с высокой доходностью последних во время эксплуатации.
- 5) Повышенные требования к стойкости строительных конструкций к внешним воздействиям из-за суровых климатических и химических условий.

Согласно этим особенностям, возникает потребность в легких, долговечных и быстро возводимых строительных конструкциях [1]. Данными параметрами обладают композитные материалы, чего, к сожалению, лишены стальные конструкции, но тем не менее в большинстве случаев при проектировании обустройства месторождений предпочтение отдается стальным конструкциям, а композитные конструкции пока ещё не нашли такого сильного распространения, как конструкции из стали.

Но резкое возрастание цен на сталь в последнее время подстегивает интерес к данной теме со стороны нефтегазовых компаний, которые занимаются вышеуказанным вопросом и которых он касается напрямую.

Применение металла при обустройстве месторождений

В данное время при обустройстве месторождений в большинстве своём применяется металл в то время, как он:

1. Сильно подорожал

По данным журнала «Металлоснабжение и сбыт» цены на металл за последние 4 года сильно возросли. По сравнению с ценой металла за 02.07.214 года: 29747 р/т, современная цена на 19.11.2021: 83767 р/т, рост 282%.

А в период с 09.07.2020 года по 19.11.2021 года цена возросла с 42811 рублей за тонну до 83767 рублей за тонну, что составляет 195,7%.

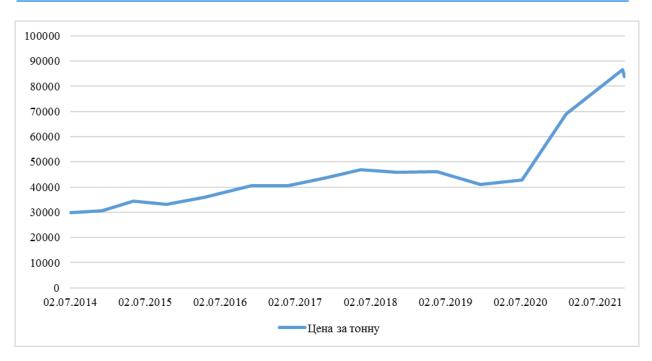


Рис. 1. – График изменения цен на стальные конструкции

2. Подвержен коррозии

Сталь в связи со своими химическими свойствами очень сильно подвержена коррозии, даже просто находясь на воздухе, она со временем покроется ржавчиной и будет терять свои прочностные характеристики, что вызывает риск неконтролируемых и скрытых деформаций. В связи с этим приходится применять особые антикоррозионные мероприятия по защите металла от коррозии, требующие дополнительных затрат: труда рабочих для антикоррозионного покрытия, дополнительных материалов для контроля сплошности изоляционного покрытия, что увеличивает сроки обустройства и, следовательно, сроки вовлечения объектов в производство, и ведет к дополнительным издержкам со стороны заказчика.

3. Требует больших трудозатрат по монтажу [2].

Стальные конструкции имеют большой удельный вес 7800 кг/м³, что вызывает сложности при монтаже последних, так как человеческое тело не способно поднимать такой вес, в связи с чем приходится:

• Затрачивать больше времени на их монтаж

• Привлекать спецтехнику в связи с высокой грузоподъемность последних.

Также при монтаже металлических конструкций возникают риски падения металлических конструкций, что требует дополнительных мероприятий по защите рабочих от опасности, в связи с чем, пока кран работает с большим грузом, необходимо освобождать большую площадь в зоне возможного отрыва груза, из-за чего иные работы в данной зоне приостанавливаются, что опять же приводит к задержкам и невозможности освоения фронта работ, пока ведутся работы краном.

4.Вызывает затраты на транспортные расходы в связи с высоким удельным весом.

Нефтегазовые месторождения находятся отдалении OT на В асфальтированных автомобильных дорог, связи требуют В cчем дополнительных затрат на обустройство дорог до объектов строительства.

Но дороги, которые обустраивают до объектов строительства, сильно отличаются от обычных асфальтированных дорог, они уступают последним в надежности и удобстве эксплуатации, что вызывает дополнительные траты при перевозке конструкций с высоким удельным весом или вовсе делает невозможным доставку последних не по зимнику, что вызывает риски срыва сроков строительства в связи с изменением климатических условий.

В то время как недостатки применения стальных конструкций в виде увеличения цены и сложности в доставке либо не устраняются, либо только ухудшаются, композитные материалы, наоборот, начинают набирать обороты, их цена не сильно изменилась за последние годы, а характеристики улучшились.

Огнестойкость возросла по сравнению с прошлыми годами.

На данный момент имеются композитные материалы со степенью огнестойкости R27, что позволяет применять их в следующих конструкциях со степенью огнестойкости IV (R15):

- Кабельные эстакады [3]
- Отдельно стоящие опоры
- Площадки обслуживания
- Переходные мостики [4]
- Входные группы

И при этом композитные материалы имеют отличные свойства, которых нет у металла — это антикоррозионная стойкость, низкий удельный вес, следовательно, легкость при монтаже и перевозке, что снижает трудозатраты и стоимость перевозки данных материалов [5].

Пусть композитные материалы и повысили свою прочность, но тем не менее её пока недостаточно, чтобы повсеместно вводить их при обустройстве месторождений, так как в некоторых конструкциях есть требования по прочности и огнестойкости, которых композитным материалам по-прежнему не хватает [6].

Временные дорожные покрытия, плиты НЦК [7]

Плиты-НЦК — это композиционные дорожные покрытия (размер - 4x2 метра), используемые для строительства в кротчайшие сроки временных дорог в труднодоступных районах [8].

Применение композиционных Плит-НЦК позволяет:

- исключить расходы на подготовку основания;
- сокращает время устройства дороги в 3 раза, а трудозатраты в 11 раз;
- исключает риски соскальзывания, опрокидывания техники; [9]
- исключает расходы на техническое обслуживание полотна. Успешно испытаны и применяются в нефтегазовом секторе.

Опоры ВЛ-6/10 кВ

Опоры ВЛЭП представляют собой конструкцию, предназначенную для поддержания проводов над землей на необходимой высоте. Применение композиционных материалов в конструкции опор позволяет:

- существенно снизить массу, что приводит к снижению стоимости СМР и транспортировки [10]
 - увеличить срок службы опор
- повысить надежность эксплуатации ВЛЭП и снизить эксплуатационные затраты. Продукт испытан, его эксплуатационные характеристики доказаны ОРГРЭС и СибНИИЭ.

Для сравнения приведена стоимость композитной промежуточной опоры и металлической промежуточной:

Таблица № 1 Сравнение стоимости композитной и металлической опоры

Наименование опоры	Вес, кг	Высота, м	Стоимость, руб.
Композитная промежуточная	≈40	7	20 191
Металлическая промежуточная	308	9,45	31 720

Также рассмотрены некоторые параметры применения композитных и стальных опор на примере Бованенковского месторождения:

Таблица № 2 Сравнение параметров применения композитной и металлической опоры

Параметры	Композитные опоры	Стальные опоры
Стоимость	46.94 млн. руб.	64.34 млн. руб.
Стоимость логистики	Вес одной опоры составляет 40 кг	Вес одной опоры составляет порядка 300 кг

Параметры	Композитные опоры	Стальные опоры
Обслуживание конструкции	Требуется регулярное обслуживание, особенно в агрессивных средах	Минимальное обслуживание
Срок службы	Может достигать 65 лет	30 лет

В заключение можно сказать, что применение композитных материалов позволит значительно сократить трудозатраты, а следовательно, и сроки обустройства месторождений, за счет свойств, описанных выше и исключения работ по антикоррозионной защите конструкций, так как они сами являются коррозионностойкими.

Но тем не менее на сегодняшний день существует недостаточное количество нормативно-методической документации для масштабного внедрения композитных материалов. Заказчики еще боятся внедрять данную технологию в строительстве технологически сложных объектов, опасаясь рисков, способных возникнуть в период реализации.

Литература

- 1. Галкин В.И. Новые эффективные методы производства изделий из волокнистых композиционных материалов. Москва: МАТИ имени К.Э. Циолковского, 1997. 53 с.
- 2. Шитова И.Ю., Самошина Е.Н., Кислицына С.Н., Болтышев С.А. Современные композиционные строительные материалы. Пенза: ПГУАС, 2015. 133 с.
- 3. Умаров А.Г., Меретуков З.А., Умаров Р.Г. К вопросу внедрения современных материалов и технологий в строительстве // Инженерный вестник Дона, 2021, №2. URL: ivdon.ru/magazine/archive/n2y2021/6833.

- 4. Иванов А.К., Ситников А.И., Шляпин С.Д. Композиционные материалы. Москва: Издательство Юрайт, 2019. 253 с.
- 5. Польской П.П., Маилян Д.Р. Композитные материалы как основа эффективности в строительстве и реконструкции зданий и сооружений. // Инженерный вестник Дона, 2012, №4 (часть 2). URL: ivdon.ru/ru/magazine/archive/n4p2y2012/1307
- 6. Цыганков А.П., Балацкий О.Ф., Сенин В.М. Технический прогресс химия окружающая среда. М., Химия, 1979. 296 с.
- 7. Баженов Ю. М., Богатов А. Д., Асташов А. М., Ерофеев В. Т., Завалишин Е. В., Никитин Л. В., Коротаев С. А. Силикатные и полимерсиликатные композиты каркасной структуры роликового формования. Москва: Издательство Ассоциация строительных вузов, 2009. 160 с.
- 8. Баженов Ю.М., Данилов А.М., Гарькина И.А., Королев Е.В., Соколова Ю.А. Системный подход к разработке и управлению качеством строительных материалов. Москва: Издательство «ПАЛЕОТИП», 2006. 188 с.
- 9. Ronald F.G. Principles of Composite Material Mechanics. Boca Raton, FL: CRC Press, 2016. 698 p.
- 10. Sumit S. Composite Materials: Mechanics, Manufacturing and Modeling. Boca Raton, FL: CRC Press, 2021. 558 p.

References

1. Galkin V.I. Novye effektivnye metody proizvodstva izdelij iz voloknistyh kompozicionnyh materialov [New efficient methods for the production of products from fibrous composite materials]. Moskva: MATI imeni K.E. Ciolkovskogo, 1997. 53 p.

- 2. Shitova I.Yu., Samoshina E.N., Kislicyna S.N., Boltyshev S.A. Sovremennye kompozicionnye stroitel'nye materialy [Modern composite building materials]. Penza: PGUAS, 2015. 133 p.
- 3. Umarov A.G., Meretukov Z.A., Umarov R.G. Inzhenernyj vestnik Dona, 2021, №2. URL: ivdon.ru/magazine/archive/n2y2021/6833.
- 4. Ivanov A.K., Sitnikov A.I., Shlyapin S.D. Kompozicionnye materialy [Composite materials]. Moskva: Izdatel'stvo Yurajt, 2019. 253 p.
- 5. Pol'skoj P.P., Mailyan D.R. Inzhenernyj vestnik Dona, 2012, №4 (chast' 2). URL: ivdon.ru/ru/magazine/archive/n4p2y2012/1307
- 6. Cygankov A.P., Balackij O.F., Senin V.M. Tekhnicheskij progress –himiya okruzhayushchaya sreda [Technical progress chemistry environment]. M., Himiya, 1979. 296 p.
- 7. Bazhenov YU. M., Bogatov A. D., Astashov A. M., Erofeev V. T., Zavalishin E. V., Nikitin L. V., Korotaev S. A. Silikatnye i polimersilikatnye kompozity karkasnoj struktury rolikovogo formovaniya [Roll-formed silicate and polymer silicate composites]. Moskva: Izdatel'stvo Associaciya stroitel'nyh vuzov, 2009. 160 p.
- 8. Bazhenov YU.M., Danilov A.M., Gar'kina I.A., Korolev E.V., Sokolova YU.A. Sistemnyj podhod k razrabotke i upravleniyu kachestvom stroitel'nyh materialov [A systematic approach to the development and quality management of building materials]. Moskva: Izdatel'stvo «PALEOTIP», 2006. 188 p.
- 9. Ronald F.G. Principles of Composite Material Mechanics. Boca Raton, FL: CRC Press, 2016. 698 p.
- 10. Sumit S. Composite Materials: Mechanics, Manufacturing and Modeling. Boca Raton, FL: CRC Press, 2021. 558 p.