Разработка эффективных составов фибробетона для подземного строительства

С.Г. Страданченко, М.С. Плешко, В.Н. Армейсков

Основным строительным материалом для возведения подземных и транспортных сооружений является железобетон. При всех известных достоинствах он имеет недостатки: конструктивные швы между сборными элементами; технологические швы в монолитных конструкциях; высокая стоимость и трудозатраты устройства гидроизоляции, дренажного слоя и защитной кладки; перенасыщенность арматурой несущих каркасов обделки; сложность обеспечения однородности свойств по всей протяженности монолитных конструкций; недостаточно эффективная работа при изгибающих и растягивающих нагрузках и др.

За последние 20 лет в технологии бетона и железобетона, благодаря более глубоким знаниям о механизме формирования высококачественной структуры цементного камня и бетона, возможности модифицировать цементную систему с помощью высокоэффективных добавок, совершенствованию способов армирования, произошли значительные изменения, характеризующиеся появлениям бетонов нового поколения и изменением ряда традиционных нормативов.

В качестве наиболее перспективных технологий бетона и железобетона для подземного и транспортного строительства можно выделить:

- 1. Обеспечение трещиностойкости и водонепроницаемости массивных фундаментов при непрерывном бетонировании самоуплотняющимися смесями.
- 2. Применение расширяющих добавок в бетонах, повышающих водонепроницаемость, морозостойкость и стойкость при воздействии агрессивных сред, в том числе сульфатных.
- 3. Переход на высокопрочную рабочую арматуру класса A500C A1000C, позволяющую существенно снизить вес сеток и каркасов.
- 4. Применение фибробетонов на основе стальной, полипропиленовой и др. фибры, обеспечивающей рост прочности бетона на растяжение при изгибе,

увеличение износостойкости, трещиностойкости и долговечности аэродромных, дорожных и половых покрытий, железнодорожных шпал и т.п.

5. Гидроизоляция материалами проникающего действия, заполняющими поры, трещины и капилляры бетона на глубину до 0,5 м и более и создающие эффективную водонепроницаемую оболочку.

Ряд новых технологий был успешно внедрен при строительстве транспортных тоннелей. В то же время технология строительства подземных сооружений характеризуется некоторыми специфическими особенностями, в частности влиянием на процесс твердения бетона и последующую работу конструкций деформаций массива, взрывных работ, подземных вод и др.

Повысить эффективность работы конструкций в таких сложных условиях можно при использовании бетона с высокой прочностью на сжатие и растяжение в раннем и проектном возрасте, но при минимально возможном модуле деформации материала.

Одним из возможных решений является включение в состав бетона полипропиленовой и стальной фибры.

Для оценки целесообразности применения полипропиленовой фибры выполнены испытания различных составов бетона с включением химических добавок пластифицирующего действия (табл. 1).

Таблица 1 Основная характеристика исследованных составов бетонов

	Состав бетонной смеси					Характеристики смеси			
№ п/п	Ц*, кг/м³	Вид и количество добавки	П, кг/м ³	Щ, кг/м ³ ,	В, л/м ³	ОК,	γ, κγ/m ³	П/Щ	В/Ц
1	350	-	750	1050	175	3	2325	0,714	0,50
2	350	C-3 (0,5%)**	750	1050	175	16	2326,7	0,714	0,50
3	350	Реламикс -2 (1,0%)	750	1050	168	15	2321,5	0,714	0,48
4	350	Biseal SCC (1,00%)	750	1050	168	16	2321,5	0,714	0,48
5	350	SikaViscoCrete (1,0%)	750	1050	168	12	2321,5	0,714	0,48

Примечания:

Таблица 2 Параметры фибры из полипропилена

№ π/π	Наименование параметра	Значение параметра			
1	Вид материала	Чистый полипропилен С ₃ H ₆ с замасливателем			
2	Длина фибры, мм	18			
3	Диаметр фибры, микроны	15			
4	Плотность при 20 °C, г/см ³	0,91			
5	Начальный модуль упругости, МПа	5700			
6	Температура размягчения, °С	160			
7	Температура воспламенения	>320 °C			

На первом этапе исследован контрольный состав бетона без включения добавок (состав №1, табл. 1). Количество фибровых волокон принималось равным 0,7, 0,9, 1,1, 1,3 и 1,5 кг/м³. Для каждой серии образцов определялась прочность на сжатие в раннем и проектном возрасте, далее производился анализ влияния расхода фибры на изменение прочностных характеристик бетона.

Установлено, что изменение расхода полипропиленовой фибры оказывает влияние на прочность образцов бетона в возрасте 1 сут. Полученная зависимость отношения прочности фибробетона к прочности бетона обычного состава от расхода фибры представлена на рис. 1. На прочность бетона в возрасте 7 и 28 сут. изменение расхода фибры не оказывает существенного влияния.

Полученные данные позволяют сделать вывод о том, что включение фибры в бетон в количестве более $1,1~{\rm kr/m^3}$ экономически не эффективно, кроме того происходит уменьшение подвижности бетонной смеси на 10 - 15%. Это затрудняет качественную укладку бетона за опалубку и последующее уплотнение.

 $^{^*}$ - в табл. обозначено: Ц – содержание цемента, П – содержание песка, Щ – содержание щебня, В - содержание воды, ОК – величина осадки конуса; γ – плотность приготовленной бетонной смеси; В/Ц – водоцементное отношение; П/Щ – отношение массы песка к массе щебня.

^{** -} процент содержания добавки по отношению к массе цемента.

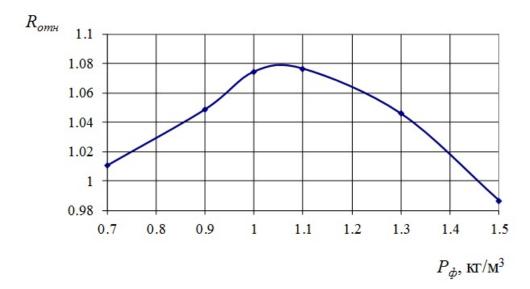


Рис. 1. Изменение относительной прочности фибробетона при различном содержании фибры

В связи с этим далее выполнены испытания фибробетонов с постоянным содержанием фибры в количестве $1~{\rm kr/m}^3$.

Полученные данные о прочности фибробетона на сжатие в различном возрасте и начальном модуле упругости материала представлены в табл. 3.

Таблица 3 Результаты испытаний фибробетона

№ состава	-	ъ бетона на азцам), МП	Начальный мо- дуль упругости		
	1 сут.	3 сут.	7 сут.	28 сут.	бетона, МПа·10 ³
5	5,2	12,7	19,1	28,5	25,8
11	8,3	16,0	20,8	30,9	26,7
13	9,1	19,6	25,5	34,2	27,9
15	9,4	22,4	26,5	37,0	29,6

Обработка полученных данных показывает, что включение фибры позволяет увеличить отношение средней прочности бетона к начальному модулю упругости на 12,5%.

Увеличение сопротивляемости бетона растягивающим и изгибающим нагрузкам можно обеспечить путем включения в его состав стальной фибры. В табл. 4 представлены результаты сравнительных испытаний бетона и фибробе-

тона с различным содержанием стальной фрезерованной фибры «VULKAN HAREX». Расход цемента для всех образов принят 360 кг/м 3 , водоцементное отношение – 0,58.

Таблица 4 Результаты испытаний обычного бетона и фибробетона на растяжение при изгибе

	Прочность на растяжение при изгибе, МПа							
№ п/п	Контроль-	Сталефибробетон при содержании фибры						
	ный состав	μ=0,5%	<i>μ</i> =1,0%	<i>μ</i> =1,5%	μ=2,0%			
1	2,16	2,34	4,49	4,75	5,63			
2	2,15	2,08	4,44	4,99	5,28			
3	1,91	2,51	5,04	5,79	4,96			
4	2,18	2,27	4,14	4,92	5,66			
5	1,96	2,16	4,34	5,34	5,31			
6	1,81	2,17	4,69	5,23	6,05			
7	2,39	2,19	4,28	5,11	5,13			
8	2,16	2,14	4,64	5,16	5,59			
9	2,39	2,46	4,78	5,49	5,43			
10	2,18	2,26	4,55	5,39	5,40			
-	$R_{\rm cp} = 2.13$	$R_{\rm cp} = 2,26$	$R_{\rm cp} = 4,54$	$R_{\rm cp} = 5,22$	$R_{\rm cp} = 5,44$			

По сравнению с образцами контрольного состава прочность фибробетона на растяжение при изгибе возросла на 100 - 200%. Аналогичные данные получены и по испытаниям фибробетона на сжатие. Увеличение прочности составило 10 - 35%. Оптимальным расходом стальной фибры по экономическим соображениям является диапазон 1 - 1,5% на 1 м³ бетона, так как в дальнейшем увеличение прочности замедляется.

Актуальной задачей для дальнейших исследований является исследование эффективности составов бетонов с комбинированным фибровым армированием, направленным на одновременное изменение и прочностных и деформационных характеристик. Помимо подземного и транспортного строительства такие бетоны могут найти применение при устройстве подземных инженерных сетей.

Литература:

- 1. Каприелов С.С., Батраков В.Г., Шейнфельд А.В. Модифицированные бетоны нового поколения: реальность и перспектива [Текст] // Бетон и железобетон. \mathbb{N} 6. 1999. С. 6 10.
- 2. Плешко М.С. Крепь глубоких вертикальных стволов. Преспективы совершенствования [Текст] // Горный информационно-аналитический бюллетень. -2010.- N = 4.-C.159-165.
- 3. Сапронов, А.А., Зибров, В.А., Соколовская, О.В., Мальцева, Д.А. Распространение акустических волн в водопроводных сетях с изменяющимся диаметром труб [Электронный ресурс] // Инженерный вестник Дона, 2012, №4 (часть 2). Режим доступа: http://www.ivdon.ru/magazine/archive/n4p2y2012/1460 Загл. с экрана. Яз. рус.
- 4. Несветаев Г.В., Та Ван Фан. Влияние белой сажи и метакаолина на прочность и деформационные свойства цементного камня [Электронный ресурс] // «Инженерный вестник Дона», 2012, №4 (часть 1). Режим доступа: http://www.ivdon.ru/magazine/archive/n4p1y2012/1110 (доступ свободный) Загл. с экрана. Яз. рус.
- 5. Pistill, M.F. Variability of Condensed Silica Fume from a Canadian Sourse and Influence on the Properties of Portland Cement // Cem. Concr. and Aggr. − 1984. V.6: №1. P. 33-37.
- 6. Setter, N., Roy, D.M. Mechanical Flatures of Chemical Shrinkage of Cement Paste. // Cem. and Concr. Res. 1978. V.8. №5. P. 623-634.
- 7. Плешко, М.С., Крошнев, Д.В. Влияние свойств твердеющего бетона на взаимодействие системы «крепь массив» в призабойной зоне ствола [Текст] // Горный информационно-аналитический бюллетень. 2008. №9. С. 320-325.
- 8. Маилян, Л.Р., Налимова, А.В., Маилян, А.Л., Айвазян, Э.С. Челночная технология изготовления фибробетона с агрегированный распределением фибр и его конструктивные свойства. [Электронный ресурс] // «Инженерный вестник Дона», 2011, №4.- Режим доступа:

http://www.ivdon.ru/magazine/archive/n4y2011/714 (доступ свободный)- Загл. с экрана.- Яз. рус.

9. Маилян, Л.Р., Маилян А.Л., Айвазян Э.С. Расчетная оценка прочностных и деформативных характеристик и диаграмм деформирования фибробетонов с агрегированным распределением волокон. [Электронный ресурс] // «Инженерный вестник Дона»,2013, №2.- Режим доступа: http://www.ivdon.ru/magazine/archive/n2y2013/1760 (доступ свободный)- Загл. с экрана.- Яз. рус.

10.Кузнецова, О.В., Лазарева, Е.А., Тышлангян, Ю.С. Композиционные разработки в технологии производства. [Электронный ресурс] // «Инженерный вестник Дона», 2013, №2. — Режим доступа: http://www.ivdon.ru/magazine/archive/n2y2013/1628 (доступ свободный) -Загл. с экрана.-Яз.рус.