Определение толщины перекрытия из перекрестно-клееных досок на примере CLT-плит Binderholz (Austria) из условия жесткости

М.В. Змеев

Донской государственный технический университет, Ростов-на-Дону

Аннотация: В статье описывается материал СLT (англ. Cross-Laminated Timber) – перекрестно клееная древесина, который используется для изготовления плит перекрытий. Производится расчет требуемой толщины перекрытия из условия жесткости под нагрузкой $2,4 \text{ кH/m}^2$ для различных пролетов.

Ключевые слова: CLT, Cross-Laminated Timber, перекрестно-клееная древесина, деревянные конструкции, перекрытие, жесткость, прогиб.

История применения древесины в строительстве насчитывает много веков, а в начале XX в. развитие деревянных конструкций получило новый мощный импульс – производство клееных деревянных конструкций [1].

Перекрестно-клееная древесина (CLT) — инновационный материал, разработанный австрийскими и немецкими инженерами и набирающий популярность в строительстве как жилых, так и нежилых зданий [2]. Здания, уже построенные по всему миру, демонстрируют большое количество преимуществ плит из перекрестно-клееной древесины, как конструкционного материала [3].

Главная особенность материала — направление волокон каждого последующего слоя ламелей перпендикулярно направлению волокон предыдущего слоя (рис. 1). Главным направлением чаще всего считают направление волокон наружного слоя.

Наиболее распространены 3, 5, 7-слойные панели. Толщины слоев могут варьироваться и могут не быть одинаковыми для всех слоев. Используются ламели преимущественно хвойных пород толщиной от 20 до 80 мм и шириной от 80 до 250 мм. Основными используемыми клеевыми составами для СLТ являются полиуретановые клеи [4-6].

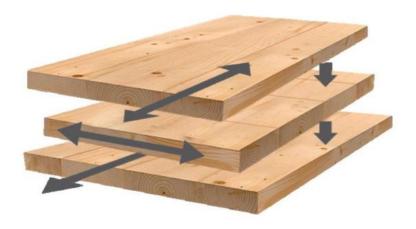


Рис. 1. – расположение ламелей в CLT

Сечение элемента, по которому ведется расчет, называют расчетным или эффективным сечением. Для него вычисляется эффективный момент инерции [7]. Наиболее подходящим методом для расчета жесткости СLТ является метод аналогии сдвига. Многослойное поперечное сечение представляют в виде условных балок A и B [8], дифференциация на балки показана на рис. 2.

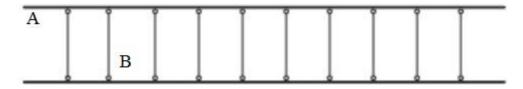


Рис. 2. – дифференциация на балки по методу аналогии сдвига

Балку А представляют, как сумму прочностей на изгиб всех слоев СLТ, а балку В – как точки Штейнера, которые обладают прочностью на сдвиг. Эти две балки соединяются с помощью жестких вставок. Таким образом достигаются равные перемещения балок А и В.

Жесткость балки А определяется по формуле (1):

$$B_{A} = \sum_{i=1}^{n} E_{i} \cdot I_{i} = \sum_{i=1}^{n} E_{i} \cdot b_{i} \cdot \frac{h_{i}^{3}}{12} , \qquad (1)$$

где b_i — ширина слоя, принимается 1 м; h_i — толщина слоя; E_i — модуль упругости.

Жесткость балки В определяется по теореме Штейнера по формуле (2):

$$B_B = \sum_{i=1}^n E_i \cdot A_i \cdot z_i \quad , \tag{2}$$

где z_i — расстояние между центрами отдельных слоев и нейтральной осью сечения; A_i — площадь сечения i-го слоя; E_i — модуль упругости.

Расчетная жесткость сечения на изгиб определяется по формуле (3):

$$(EI)_{ef} = B_A + B_B = \sum_{i=1}^{n} E_i \cdot b_i \cdot \frac{h_i^3}{12} + \sum_{i=1}^{n} E_i \cdot A_i \cdot z_i , \qquad (3)$$

Далее на шарнирно-опертое по двум сторонам перекрытие задается равномерно распределенная нагрузка q=2,4 к H/M^2 и по формуле (4) определяется максимальный прогиб [9]:

$$f = \frac{f_0}{k} \cdot \left[1 + c \cdot \left(\frac{h}{l} \right)^2 \right] , \tag{4}$$

где $f_0 = \frac{5ql^4}{384El}$ — величина прогиба без учета деформаций сдвига; k — коэффициент, учитывающий влияние переменности высоты сечения, принимается равным 1 для постоянного сечения; c — коэффициент, учитывающий влияние деформаций сдвига от поперечной силы; h — высота сечения; l — пролет .

Віnderholz используют древесину двух классов прочности: С24 — в главных слоях, С16 — в побочных. Значения модулей упругости E_x для них равны 12000 и 8000 МПа соответственно. Так как кромки досок не проклеены, $E_y = 0$ [10]. Доски для отдельного слоя применяют толщиной от 20 до 40 мм. Прогибы определяются для перекрытий пролетом 4; 6; 8; 10; 12 м, состоящих из трех, пяти, семи и девяти слоев различной толщины.

Нормативные предельно-допустимые прогибы (СП 20.13330.2016) для каждого из пролетов и результаты вычисления фактических значений прогибов нагруженного перекрытия приведены в табл. 1. Фактическое значение прогиба сравнивается с предельно-допустимым. При неудовлетворительном значении прогиба для данной величины пролета, прогиб для большего пролета не вычислялся.

Таблица № 1 Нормативные и фактические значения прогибов

•	•		•			
Пролет l , м	4	6	8	10	12	
Предельный прогиб $[f]$ относительно пролета	l / 167	l / 200	l / 217	1/233	1/250	
Предельный прогиб $[f]$, мм	24	30	37	43	48	
3-слойная СLТ- плита, толщина	Прогиб f , мм					
60 мм	54,3 (-)					
80 мм	21,6	106,4 (-)				
90 мм	14,1	69,2 (-)				
100 мм	10,5	51 (-)				
120 мм	6,6	31,3 (-)				
5-слойная СLT- плита, толщина	Прогиб f , мм					
100 мм	12,7	52,4 (-)				
120 мм	8,7	34,2 (-)				
140 мм	4,5	21,2	65,6 (-)			
150 мм	2,9	13,9	43,1 (-)			
160 мм	2,5	11,7	36,2	87,3 (-)		
180 мм	1,9	8,9	27,3	65,7 (-)		
200 мм	1,6	7,1	21,4	51,2 (-)		
7-слойная СLТ- плита, толщина	Прогиб f , мм					
220 мм	1,1	4,7	14,1	33,6	68,7 (-)	
240 мм	0,9	3,9	11,5	27,2	55,4 (-)	
9-слойная СLТ- плита, толщина	Прогиб f , мм					

260 мм	0,7	2,9	8,7	20,7	42,4

Исходя из результатов вычислений, при данной нагрузке на CLTперекрытие рекомендуется назначать его толщину согласно табл. 2.

Таблица № 2 Рекомендуемая толщина СLT-перекрытия

Пролет l , м	4	6	8	10	12
Толщина	80-140	140-180	160-200	200-260	от 260
перекрытия, мм	00 110	110 100	100 200	200 200	01 200

Литература

- 1. Ковальчук Л.М. Производство деревянных клееных конструкций. РИФ Стройматериалы, 2005. 330 с.
- 2. Шогенов С.Х., Балов А.А., Афашагов Б.3. Новые конструкции универсальных панелей зданий. Инженерный вестник Дона, 2016, №2. URL: ivdon.ru/uploads/article/pdf/IVD_18_shogenov_balov.pdf_fb3a2e9b32.pdf
- 3. Емельяненко Д.А. Конструкции полносборного энергоэффективного индивидуального жилого дома с деревянным каркасом. Инженерный вестник Дона, 2018, №2. URL: ivdon.ru/uploads/article/pdf/IVD_58_Emelyanenko.pdf_ 6e48cb7c45.pdf
- 4. Gangnon, S., Pirvu, C. CLT Handbook: cross-laminated timber. Quebec: FPInnovations, 2011, 626 c.
- 5. EN 16351:2015 Timber structures. Cross laminated timber. Requirements. CEN, 2015. 108 c.
 - 6. The CLT Handbook. Stockholm: Swedish Wood, 2019. 188 c.
- 7. Шелофаст В.В., Черных А.Г. Расчет несущих элементов деревянных конструкций. Томск: Издательство ТГАСУ, 2013. 136 с.

- 8. EN 1995-1-1 Eurocode 5: Design of timber structures. Part 1-1: General Common rules and rules for buildings. CEN, 2014. 121 c.
- 9. Гиясов Б.И., Запруднов В.И., Стриженко В.В., Серёгин Н.Г. Конструкции из древесины и пластмасс. ACB, 2017. 582 с.
 - 10. Серов Е.Н. Проектирование деревянных конструкций. Издательство АСВ, 2015. 536 с.

References

- 1. Koval'chuk L.M. Proizvodstvo derevyannykh kleenykh konstruktsiy [Production of wooden glued structures]. RIF Stroymaterialy, 2005. 330 p.
- 2. Shogenov S.H., Balov A.A., Afashagov B.Z. Novye konstruktsii universal'nykh paneley zdaniy. Inzhenernyj vestnik Dona, 2016, №2. URL: ivdon.ru/uploads/article/pdf/IVD_18_shogenov_balov.pdf_fb3a2e9b32.pdf
- 3. Emel'yanenko D.A. Konstruktsii polnosbornogo energoeffektivnogo individual'nogo zhilogo doma s derevyannym karkasom. Inzhenernyj vestnik Dona, 2018, №2. URL: ivdon.ru/uploads/article/pdf/ IVD_58_Emelyanenko.pdf_6e48cb7c45.pdf
- 4. Gangnon, S., Pirvu, C. CLT Handbook: cross-laminated timber. Quebec: FPInnovations, 2011, 626 p.
- 5. EN 16351:2015 Timber structures. Cross laminated timber. Requirements. CEN, 2015. 108 p.
 - 6. The CLT Handbook. Stockholm: Swedish Wood, 2019. 188 p.
- 7. Shelofast V.V., Chernykh A.G. Raschet nesushchikh elementov derevyannykh konstruktsiy [Calculation of load-bearing elements of wooden structures]. Tomsk: Izdatel'stvo TGASU, 2013. 136 p.
- 8. EN 1995-1-1 Eurocode 5: Design of timber structures. Part 1-1: General Common rules and rules for buildings. CEN, 2014. 121 p.

- 9. Giyasov B.I., Zaprudnov V.I., Strizhenko V.V., Seregin N.G. Konstruktsii iz drevesiny i plastmass [Wood and plastic structures]. ASV, 2017. 582 p.
 - 10. Serov E.N. Proektirovanie derevyannykh konstruktsiy [Design of wooden structures]. Izdatel'stvo ASV, 2015. 536 p.