# Имитационное моделирование работы трансмиссии трактора MT3-82 в среде Simulink

M.В.  $Cudopos^1$ , B.H.  $Cudopos^2$ 

<sup>1</sup>Калужский филиал «РГАУ-МСХА им. К.А. Тимирязева», Калуга <sup>2</sup> Калужский филиал «МГТУ им. Н.Э. Баумана», Калуга

**Аннотация:** Приведены результаты исследования работы трансмиссии трактора МТЗ-82 на различных передачах. Для автоматизации расчетов при исследовании применено имитационное моделирование в среде Simulink.

Ключевые слова: трансмиссия, трактор, имитационное моделирование, среда Simulink.

#### Введение

При проведении актуальных исследований динамических процессов машиннотракторных агрегатов (МТА) при выполнении технологических операций появляется острая потребность в моделировании отдельных агрегатов и узлов, а также изменение заданной передачи в процессе моделирования [1, 2]. Имитационное моделирование, получившее в последнее время широкое распространение в среде Simulink позволяет воспроизвести наглядно и достаточно просто любой агрегат или узел, входящий в состав МТА [3-4].

### Материалы и методы

Одним из узлов, имеющих наиболее многочисленные вариации выходных значений, является трансмиссия трактора [5]. Понижающий редуктор и коробка передач с редуктором трактора МТЗ-82 позволяют получать восемнадцать вариантов изменения числа пар зацеплений. Все шестерни, входящие в трансмиссию трактора МТЗ-82 приведены на рис. 1, а их количество зубьев в таблице 1.

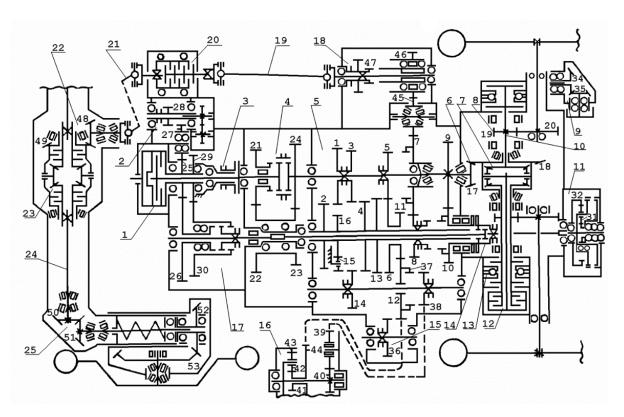



Рис. 1. – Кинематическая схема трансмиссии трактора МТЗ-82

Таблица № 1 Шестерни трансмиссии трактора МТЗ-82, входящие в зацепление по передачам и количество их зубьев

| Передача     |    |    |    |    | Шестерни, входящие в зацепление |    |    |    |    |    |    |    |    |    |    |
|--------------|----|----|----|----|---------------------------------|----|----|----|----|----|----|----|----|----|----|
| Шестерни     | 1  | 2  | 3  | 4  | 5                               | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| Число зубьев | 27 | 38 | 24 | 40 | 21                              | 43 | 45 | 20 | 37 | 28 | 26 | 32 | 43 | 17 | 31 |
| Шестерни     | 16 | 17 | 18 | 19 | 20                              | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| Число зубьев | 19 | 12 | 41 | 13 | 69                              | 30 | 35 | 30 | 34 | 18 | 47 | 27 | 25 | 26 | 38 |
| Шестерни     | 31 | 32 | 33 | 34 | 35                              | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |    |
| Число зубьев | 16 | 63 | 30 | 22 | 14                              | 37 | 20 | 20 | 25 | 10 | 18 | 15 | 48 | 31 |    |

Для моделирования в среде Simulink разобьем рассматриваемый участок трансмиссии на четыре подсистемы (рис. 2) [6-8]: а) подсистема gear\_1 — понижающий редуктор-удвоитель числа передач (рисунок 1), с помощью него можно крутящий момент передавать через редуктор (подсистема gear\_11) или минуя его (подсистема gear\_h1). На выходе из

подсистемы gear\_1 будут значения, соответствующие режимам: редуктор включен – 1 и редуктор выключен - 2; б) подсистема gear 2 – понижающий редуктор коробки передач, с помощью которого можно понижающий ряд (подсистема gear\_12) или повышающий ряд (подсистема gear\_2). На выходе будут значения, соответствующие режимам: включен редуктор коробки передач с подключением 1, 3, 4 и 5 передач – 1 и соответственно с переключением 2, 6, 7 и 8 передач - 2; в) подсистема gear 3 – имитирует переключение каретки первичного вала для соединения напрямую с вторичным валом или для включения рабочего ряда передач. На выходе из подсистемы gear\_3 будут значения, соответствующие режимам: подключены 1 - 8 передачи – 1 и подключена прямая 9 передача - 2; г) подсистема gear 4 – имитирует работу четырехступенчатого редуктора коробки передач, с помощью которого переключаются попарно передачи с первой по восьмую. На выходе из подсистемы gear\_4 будут значения, соответствующие режимам: подключены 1 и 2 передачи – 1; 3 и 6 передачи – 2; 4 и 7 передачи – 3; 5 и 8 передачи – 4.

Для автоматизированного определения передаточных чисел и КПД трансмиссии трактора смоделированы подсистемы itr\_Transmissin и ktr\_Transmissin (рис. 3) [9-10].

Подсистема itr\_Transmissin включает в себя ряд подсистем (рис. 4.1): а) подсистема gear ratio 1 — при входном сигнале равном 1 выдает передаточное число подключенного понижающего редуктора, при значении 2 — передаточное число, равное единице; б) подсистема gear ratio 2 — при входном сигнале, равном 1, выдает передаточное число понижающего ряда редуктора коробки передач, при значении 2 — передаточное число повышающего ряда; в) подсистема gear ratio 3 — при входном сигнале, равном 1, выдает передаточное число передач от 1 до 8 с учетом всех включенных редукторов и при значении 2 - передаточное число 9; г) подсистема gear ratio

4 — выдает передаточное число четырехступенчатого редуктора коробки передач, соответственно при входном сигнале равном 1—1 и 2 передач, при 2—3 и 6 передач, при 3—4 и 7 передач и при 4—5 и 8 передач; д) в данном блоке определяется полное передаточное число трансмиссии с учетом главной передачи и бортовых редукторов.

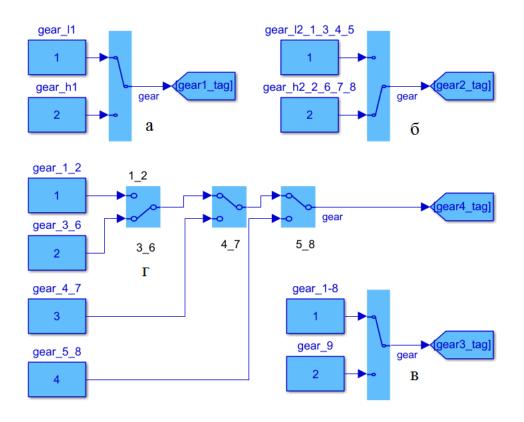



Рис. 2. – Подсистема переключения понижающего редуктора и коробки передач в среде Simulink

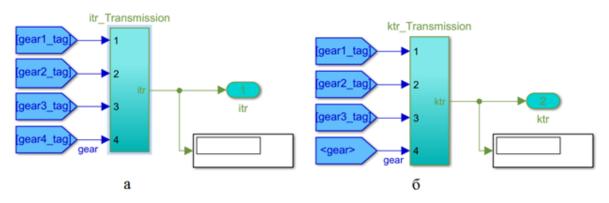



Рис. 3. – Подсистемы модели трансмиссии трактора МТЗ - 82:

- а подсистема itr\_Transmissin;
- б подсистема ktr\_Transmissin

Подсистема ktr\_Transmissiя включает в себя такие подсистемы, как (рис. 4.2): а) подсистема gear ratio 1 — при входном сигнале, равном 1, выдает КПД подключенного понижающего редуктора, при значении 2 — КПД, равное единице; б) подсистема gear ratio 2 — при входном сигнале, равном 1, выдает КПД понижающего ряда редуктора коробки передач, при значении 2 - КПД повышающего ряда редуктора коробки передач; в) подсистема gear ratio 3 — при входном сигнале, равном 1, выдает КПД передач от 1 до 8 с учетом всех включенных редукторов и при значении 2 - КПД 9 передачи; г) подсистема gear ratio 4 — выдает КПД четырех ступенчатого редуктора коробки передач соответственно при входном сигнале, равном 1 — 1 и 2 передач, при 2 — 3 и 6 передач, при 3 — 4 и 7 передач и при 4 — 5 и 8 передач; д) в данном блоке определяется полное КПД трансмиссии с учетом главной передачи и бортовых редукторов.

В последнем блоке д) родсистема ktr\_Transmissinя общий КПД трансмиссии определяется по формуле:

$$\eta_{\mathrm{TP}} = \eta_1 \cdot K_{\mathrm{N1}} + \eta_2 \cdot K_{\mathrm{N2}},$$

где  $K_{N1}$ ,  $K_{N2}$  — коэффициенты передачи мощности от двигателя до ведущих колес соответственно первого и второго мостов, при этом  $K_{N1}+K_{N2}=1$ ;  $\eta_1$ ,  $\eta_2$  — КПД участка трансмиссии от двигателя до ведущих колес соответственно первого и второго мостов.

КПД участка трансмиссии от двигателя до ведущих колес соответственно одного из мостов определяется по известному выражению:

$$\eta_{\rm i} = (1 - \zeta) \cdot \eta_{\rm Hi},$$

где  $\zeta$  - коэффициент, учитывающие потери холостого хода;  $\eta_{\rm Hi}$  - КПД, учитывающие потери от нагрузки.

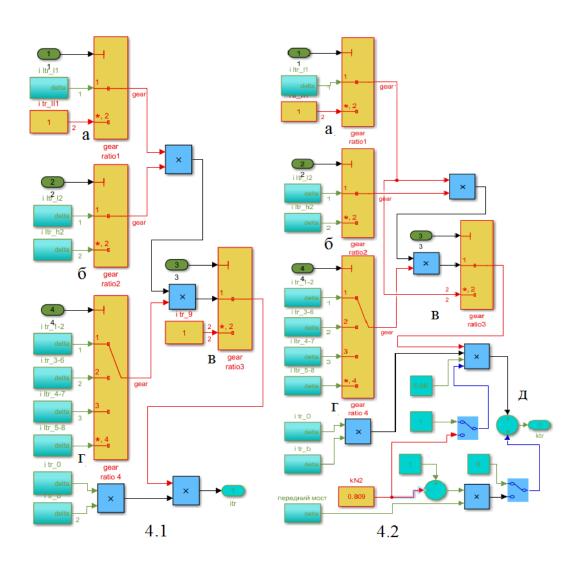



Рисунок 4 – Структура подсистем модели трансмиссии трактора МТЗ - 82:

- 4.1 подсистема itr\_Transmissin;
- 4.2 подсистема ktr\_Transmissin

Расчет передаточных чисел рассмотрим на примере подсистемы itr\_11 понижающего редуктора с шестернями 22/21 и 24/23 (рис. 4.1), которая включает блоки постоянных значений, равных количеству зубьев шестерен, входящих в зацепление и блоков арифметических действий: деление и умножение. Данный блок воспроизводит расчет передаточного числа понижающего редуктора:

$$U_p = U_{p1} \ U_{p2}, \ U_{p1} = z_{22}/z_{30} \ \text{и} \ U_{p2} = z_{24}/z_{23},$$

где  $U_{p1}$ ,  $U_{p2}$  - передаточные числа с ведущего на ведомый вал понижающего редуктора и с ведомого вала понижающего редуктора на первичный вал коробки передач;  $z_{22}$ ,  $z_{30}$ ,  $z_{24}$ ,  $z_{23}$  — число зубьев шестерен понижающего редуктора (рис. 1).

Расчет КПД рассмотрим на примере подсистемы itr\_11 понижающего редуктора с шестернями 22/21 и 24/23 (рис. 4.2), которая включает блоки постоянных значений КПД пар шестерен, входящих в зацепление и блока умножения. Данный блок воспроизводит расчет КПД понижающего редуктора под нагрузкой:

$$\eta_{Hi} = \eta_{II}^n \cdot \eta_{K}^m,$$

где  $\eta_{\rm q}$ – КПД цилиндрической пары шестерен;  $\eta_{\rm k}$ – КПД конической пары шестерен; n, m – количество пар шестерен соответственно цилиндрических и конических шестерен.

**Результаты исследований.** С помощью рассмотренной модели в среде SIMULINK были получены значения передаточных чисел и КПД трансмиссии на каждой передаче с использованием редуктора и без него (таблице 2).

Результаты расчетов передаточных чисел и КПД трансмиссии трактора MT3-82

|              |          | Переда  | точные   | КПД:            |       |  |
|--------------|----------|---------|----------|-----------------|-------|--|
|              | Передача | чис     | сла:     | без редуктора / |       |  |
|              |          | без ред | уктора / | с редуктором    |       |  |
|              |          | с редуг | ктором   |                 |       |  |
| Привод       | 1        | 242     | 319,9    | 0,669           | 0,603 |  |
| задних колес | 2        | 142,1   | 187,9    | 0,669           | 0,603 |  |
|              | 3        | 83,55   | 110,5    | 0,741           | 0,669 |  |
|              | 4        | 68      | 89,92    | 0,741           | 89,92 |  |
|              | 5        | 57,43   | 75,93    | 0,741           | 0,669 |  |
|              | 6        | 49,06   | 64,88    | 0,741           | 0,669 |  |

Таблица № 2

| 7 | 39,94 | 52,81 | 0,741 | 0,669 |
|---|-------|-------|-------|-------|
| 8 | 33,73 | 44,59 | 0,741 | 0,669 |
| 9 | 18,13 | 23,98 | 0,821 | 0,741 |

Разработанная в среде SIMULINK модель трансмиссии трактора МТЗ-82 позволяет для необходимых передач получать значения передаточных чисел и КПД трансмиссии трактора МТЗ-82, а также наглядно демонстрировать принцип расчета передаточных чисел и КПД трансмиссии. Предлагаемая модель трансмиссии трактора МТЗ-82 может использоваться как отдельно, так и в составе более сложной программы, позволяющей моделировать динамические процессы трактора.

## Литература

- 1. Поливаев О.И., Гребнев В.П., Ворохобин А.В. Теория трактора и автомобиля: учебник. Санкт-Петербург: Лань, 2016. 232 с.
- 2. Кутьков Г.М. Тяговая динамика трактора. М.: Машиностроение, 1980. 215 с.
- 3. Полковникова Н.А. Научные и инженерные расчёты в среде Matlab: учебное пособие. М.: Изд-во «МОРКНИГА», 2019. 143 с.
- 4. Кулаев H.A., Зубко П.С. Использование динамического энергоэффективности гибридных программирования повышения ДЛЯ транспортных средств // Инженерный вестник Дона. 2019.  $N_{\underline{0}}$ 9. URL:.ivdon.ru/ru/magazine/archive/N9y2019/6177
- 5. Darus Rosheila Binti Modeling and control of active suspension for a full car model. A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electrical Mechatronics and Automatic Control). 2008.
- 6. Жилейкин М.М., Котиев Г.О. Моделирование систем транспортных средств: учебник. М.: Издательство МГТУ им. Н.Э. Баумана, 2018. 280 с.

- 7. Документация MATLAB. URL: docs.exponenta.ru/documentation-center.html.
- 8. Сидорова А.В., Степин П.И., Сидоров В.Н. Имитационное моделирование колебаний центра масс колесной машины с помощью программы Simulink // Инженерный вестник Дона. 2020. № 4. URL: ivdon.ru/ru/magazine/archive/n4y2020/6395.
- 9. Заруцкий С.А., Власенко Е.А. Автоматизация анализа данных экспериментальных исследований // Инженерный вестник Дона. 2018. № 1. URL: ivdon.ru/ru/magazine/archive/n1y2018/4753
- 10. Imine H., Delanne Y., M'Sirdi N.K. Road profile input estimation in vehicle dynamics simulation // Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 2006, 44:4, pp. 285-303.

#### References

- 1. Polivaev, O.I., Grebnev V.P., Vorohobin A.V. Teorija traktora i avtomobilja: uchebnik [Tractor and car theory]. Sankt-Peterburg: Lan', 2016. 232 p.
- 2. Kut`kov G.M. Tyagovaya dinamika traktora. M.: Mashinostroenie, 1980. 215 p.
- 3. Polkovnikova N.A. Nauchnye i inzhenernye raschjoty v srede Matlab: uchebnoe posobie [Scientific and engineering calculations in Matlab environment] M.: Izd-vo «MORKNIGA», 2019. 143 p.
- 4. Kulaev N.A., Zubko P.S. Inzhenernyj vestnik Dona. 2019. № 9. URL: URL:.ivdon.ru/ru/magazine/archive/N9y2019/6177
- 5. Darus Rosheila Binti Modeling and control of active suspension for a full car model. A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electrical Mechatronics and Automatic Control). 2008.

- 6. Zhilejkin M.M., Kotiev G.O. Modelirovanie sistem transportnyh sredstv: uchebnik [Simulation of vehicle systems]. M.: Izdatel'stvo MGTU im. N.Je. Baumana, 2018. 280 p.
- 7. Dokumentacija MATLAB: URL:exponenta.ru/documentation-center.html.
- 8. Sidorova A.V., Stepin P.I., Sidorov V.N. Inzhenernyj vestnik Dona. 2020. № 4. URL: ivdon.ru/ru/magazine/archive/n4y2020/6395.
- 9. Zaruckij S.A., Vlasenko E.A. Inzhenernyj vestnik Dona. 2018. № 1. URL: ivdon.ru/ru/magazine/archive/n1y2018/4753
- 10. Imine H., Delanne Y., M'Sirdi N.K. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 2006, 44:4, pp. 285-303.