Согласование мощности теплогенератора и горелочного устройства

Аннотация: В данной статье приведены результаты анализа факторов, оказывающих влияние на горелочное устройство теплогенераторов, а также методов их выбора. Приведены результаты экспериментального исследования зависимости эффективности теплогенераторов от рабочей мощности горелочных устройств. Разработаны рекомендации при выборе теплогенератора и горелочного устройства.

Ключевые слова: теплогенератор, горелочное устройство, режим горения, рабочая мощность, тепловой баланс.

Совершенствование технологии производства, передачи и потребления тепловой энергии, экономия топливно-энергетических ресурсов, охрана окружающей среды являются приоритетными направлениями развития прикладных исследований в области теплоэнергетики. При этом вопросы повышения энергетической эффективности и применения технологий энергосбережения становятся наиболее актуальными на этапе производства тепловой энергии. Энергосбережение, при правильной реализации организационных, правовых, технических, технологических, экономических и иных мер на теплоисточниках обладает значительным потенциалом снижения потребления топлива, а следовательно, и себестоимости выработки тепловой энергии.

В котельных одним из способов снижения затрат на производство тепловой энергии является повышение КПД теплогенераторов [1]. Коэффициент полезного действия (КПД) теплогенераторов, работающих на природном газе и мазуте, составляет 85-92 % (при расчете по низшей теплоте сгорания топлива). Однако фактический КПД теплогенераторов нередко существенно отличается от приведенных в технических документах. Существует стереотип, что это связано с некачественной настройкой

горелочного устройства, с качеством газа (поскольку наладка происходит в начале отопительного периода, а оценка эффективности в отопительный период); с динамическим режимом теплопотребления. Все данные причины наличествуют. Вместе с тем минимизировать их можно за счет согласования мощности теплогенератора и горелочного устройства, как на стадии проектирования, так и эксплуатации [2].

Существует два основных вида газовых горелок – это вентиляторные (наддувные) горелки, в которых воздух, необходимый для процесса горения, нагнетается в смесительный узел, и атмосферные горелки, где процесс горения обеспечивается воздухом, подаваемым естественным путем. Газовая наддувная горелка подбирается к теплогенератору отдельно и в большинстве случаев не включена в комплект поставки. В данном случае у потребителя появляется множество вариантов выбора марки, типа и производителя горелочного устройства. Для полного сжигания топлива газовые горелки должны удовлетворять следующим условиям: надежность и безопасность в устойчивое работе; зажигание широких пределах В измерения теплопроизводительности горелок; простота конструкции, изготовления, ревизии, ремонта И автоматизации работы универсальная возможность использования в установках различных типов; допустимое сопротивление по воздушному тракту; бесшумная работа на всех нагрузках, без вибраций арматуры и элементов установки.

В работах [3-5] рассмотрена компоновка теплогенераторов и горелочных устройств. Полученные при этом рекомендации основаны на данных наладочных испытаний и опыте эксплуатации. Результаты этих исследований показали, что от выбора и компоновки горелочных устройств в значительной мере зависит безопасное и рациональное использование топлива.

При избытке топлива или недостатке кислорода в топливной смеси, горение топлива будет происходить не полностью и сопровождаться образованием угарного газа, а также снижением количества выделяемой теплоты (процесс неполного сгорания применяется при производстве генераторного газа и концентрированного углеводородом твердого топлива). При большем количестве воздуха, чем требуется, избыточное количество воздуха поглощает некоторое количество тепла, а также оставшееся тепло распределяется на больший объем газов, снижая удельный тепловой поток. Ниже в таблице 1 приведены характеристики топлива и результаты расчета количества воздуха. Количество кислорода, содержащегося в воздухе при нормальных условиях (высоты над уровнем моря – 100 м, температуры воздуха – 20 °C) составляет приблизительно 21 % от объема и 23 % от веса. Уменьшение количества кислорода при уменьшении плотности воздуха, связанное с его нагреванием при горении и изменением высоты над уровнем моря является фактором, которым нельзя пренебрегать. Кроме того, на содержание кислорода в воздухе влияет: влажность воздуха (увеличение относительной влажности воздуха снижает содержание кислорода); повышенное содержание в воздухе пыли и других волокнистых соединений.

Топливо характеризуется: количеством теплоты (кДж/кг или кДж/нм³), произведенным при полном сторании единицы массы или объема топлива с учетом теплоты, полученной при конденсации водяных паров из дымовых газов (высшая теплотворная способность); теоретическим количеством воздуха, необходимого для горения — минимальным количеством воздуха; точкой росы — температура при достижении которого - водяной пар, содержащийся в дымовых газах, начинает конденсироваться; относительной плотностью газа — соотношение массы одного и того же объема сухого воздуха и газа, измеряемого при одинаковой температуре и давлении; взрывоопасной концентрацией — концентрацией газа в воздухе, %, в котором

данная смесь является взрывоопасной; числом Воббе (тепловая мощность газа) — соотношением высшей теплотворной способности и квадратным корнем относительной плотности газа.

Таблица №1 Характеристики газообразного топлива

Название топлива	Удельная плотность при 15°C	Взрывоопасная концентрация, %	спосо	гворная бность, к/Нм ³	Теоретически необходимый количества воздуха, м³/Hм³	Теоретическое количество влажных ДГ, M^3/HM^3	Водяной пар в ДГ, ${ m \kappa r/Hm}^3$	Точка росы, °С	Число Воббе, МДж/Нм³
Метан (чистый)	0,555	5-15	34,02	37,78	9,56	10,44	1,61	58	45,87
Пропан (чистый)	1,555	2,4-9,3	88	96,65	24,37	26,16	3,29	54	77,51
Бутан (чистый)	2,094	2-7,6	116,09	125,81	32,37	34,66	4,2	53	80,22
Природный газ (86% метан, 14% азот)	-	-	29,25	32,49	-	-	-	-	37,39
Сжиженный нефтяной газ (70 % пропан, 30 % бутан)	1,686	2,1-9,5	101,6	110,4	26,32	28,23	3,51	54	78,25
Биогаз (64 % метан, 34,6 % двуокись углерода, 1,2 % азот)	0,896	7,8-23,4	23	25,5	6,12	7,05	1,03	57	24,3
Бытовой газ (54,5 % водород, 5,5% гарный газ, 24,4 % метан и т.д.)	0,397	5-30	20,9	23,6	4,33	4,98	0,92	62	33,17

Большинство теплогенераторов моноблочными оснащаются вентиляторными горелками. Из данных исследований следует, что наиболее горелки перспективными являются c плавным регулированием, позволяющим осуществлять непрерывный режим горения. Данный режим позволяет оборудованию работать без динамических и температурных воздействий и оптимизирует затраты (потери) тепловой энергии на собственные нужды. Для выбора горелки рекомендовано использовать результаты экспериментальных данных, представленных в виде графика. Горелку следует подбирать, исходя из условий попадания максимальной тепловой нагрузки в ее рабочий диапазон.

Однако данные рекомендации не учитывают отклонения, допущенные при изготовлении и выборе теплогенератора, его фактического состояния. Тепловой, гидравлический и аэродинамический режим работы теплогенератора также отличны от расчетного. Вследствие этого возникают отклонения технико-экономических показателей и критериев эффективности работы систем теплоснабжения [6].

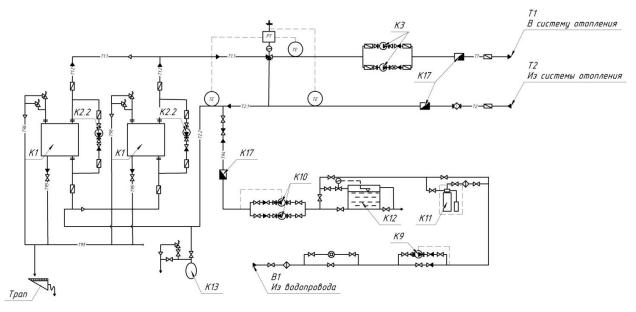
Для подтверждения влияния данных отклонений и необходимости дополнительного согласования мощности теплогенератора и горелочного устройства проведены измерения на действующей системе теплоснабжения.

Общие сведения по теплоисточнику - результаты замеров, использованные для анализа, представлены в таблице 2. В котельной установлены два котлоагрегата Ellprex 760, введенные в эксплуатацию в 2012 году. Температурный график отпуска тепловой энергии в сеть - 95/70 °C. Суммарная присоединенная тепловая нагрузка потребителей СЦТ равна 0,734 Гкал/ч. В котельной осуществляется погодное регулирование.

Таблица №2 Общие сведения по теплоисточнику ООО «Энергосервис» г. Пенза

Наименовани е котельной, адрес,	Тип котель ной	Марка котлоагре гата	Год ввода в эксплуат ацию	Установленн ая тепловая мощность котлоагрегат а, Гкал/ч	кпд	Подключе нная тепловая нагрузка, Гкал/ч
по ул. Набережная	отопит	Ellprex 760	2017 г.	0,499-0,653	92,1-91,5	0,734
реки Пенза, 3a	ельная	Ellprex 760	2017 г.	0,499-0,653	92,1-91,5	0,734

Таблица №3 Характеристики котлоагрегатов и горелочных устройств котельной


Тип	Полезная мощность котла, кВт	КПД- 100%	Марка горелки	Режим работы	Мощно	сть, кВт
Ellprex 760	0,499- 0,653	92,1- 91,5	CUENOD C.100 GX507 T1	Двухступенч атый	1 ступень 2 ступень	170,0 520,0-820,0
Ellprex 760	0,499- 0,653	92,1- 91,5	CUENOD C.100 GX507 T1	Двухступенч атый	1 ступень 2 ступень	170,0 520,0-820,0

Измерения параметров теплоносителя (расход, температура) данной котельной производятся в двух точках при работе котельной в режиме погодного регулирования. Кроме того, за период установившегося режима или в данном случае, по истечении периода стабилизации сигналов с датчиков температуры и расхода, фиксируется расход газа в начале и конце периода измерения.

Тепловая схема котельной, обеспечивающей тепловой энергией с отопительно-вентиляционными целями при низкотемпературном графике (95-70 °C, 105-70 °C) близко расположенных (в радиусе до 0,5 км) квартальных потребителей как с индивидуальными тепловыми пунктами, так и при непосредственном подключении через тепловые узлы [7,8], изображена на рис. 1. Регулирование величины отпущенной в сеть тепловой энергии в данной схеме, осуществляется путем поддержания температуры трубопроводе, теплоносителя подающем утвержденному ПО температурному графику и согласно температуре наружного воздуха. Теплоноситель сетевыми насосами, размещенными на подающем коллекторе, передается в абонентскую систему теплоснабжения (включающая ИТП или тепловой узел, системы отопления и вентиляции). Теплоноситель, зависимости от схемы абонентского теплового узла, передав тепловую энергию с теми или иными целями, охлажденный возвращается в котельную

в коллектор обратного сетевого теплоносителя. Часть теплоносителя из коллектора поступает в котлоагрегаты для обеспечения их работы и съема произведенной тепловой энергии.

При ЭТОМ поступающий В котлоагрегат теплоноситель при необходимости (при его температуре ниже 50 °C) для исключения конденсации дымовых газов в котлоагрегате, подогревается теплоносителем из подающего коллектора. Теплоноситель из подающего в обратный коллектор перемещается рециркуляционным насосом. Для обеспечения температурного графика часть теплоносителя обратного коллектора трехходовой поступает смесительный клапан ДЛЯ подмеса теплоносителем от подающего коллектора.

К1 – котел водогрейный, К2 – циркуляционный насос, К3 – сетевой насос

Рис. 1 – Тепловая схема котельной ООО «Энергосервис» г. Пенза

Основными задачами, решаемыми при помощи измерения параметров теплоносителя в разных режимах работы теплогенераторов являются:

- определение по данным параметрам тепловой мощности теплогенератора в разных режимах горения;
- определение критерия эффективности производства тепловой энергии (определение удельного расхода топлива);

- оценка эффективности технологического процесса производства тепловой энергии;
- накопление базы данных для эффективной наладки (настройки)
 режимов горения топлива и графиков отпуска тепловой энергии в систему
 отопления (режимных карт теплогенератора).

Для обработки и собирания информации была создана система сбора и обработки данных, включающая в себя следующие узлы: персональный компьютер РС iRUHome 510 i5-3330/8Gb/1Tb/Gf610, с установленными лицензионными программами, аналого-цифровая плата E14-440, согласующее устройство (блок шунтов), блок питания датчиков, датчики температуры, портативный расходомер жидкости Portaflow 330.

Обработанные данные параметров теплоносителя исследуемых теплогенераторов представлены в виде графиков (рис. 2, 3).

При среднем значении расхода теплоносителя (59,10 м³/ч) за период измерения в таблице 4 представлены средние параметры.

Таблица 4
Результаты измерений параметров теплоносителя и показатели
эффективности работы котлоагрегатов

№ котлоагрегата и режим горения	Период измерения, мин	Расход газа, м ³	Темпер теплоносі		Средняя тепловая	Удельный расход топлива, кг.ус.т./Гк ал
			в подающем	в обратном	мощность, Гкал/ч	
№1/1 ступень	51:03	39	52,945	47,003	0,342	153,95
№1/2 ступень	33:55	32	53,691	46,745	0,399	163,20
№2/1 ступень	39:42	34	53,252	46,812	0,373	158,56
№2/2 ступень	35:17	36	56,11	48,498	0,439	160,39

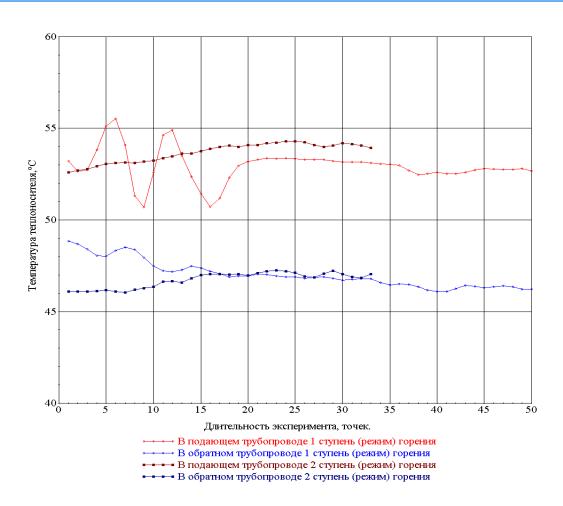


Рис. 2. – Температура теплоносителя в точке измерения при работе котлоагрегата №1

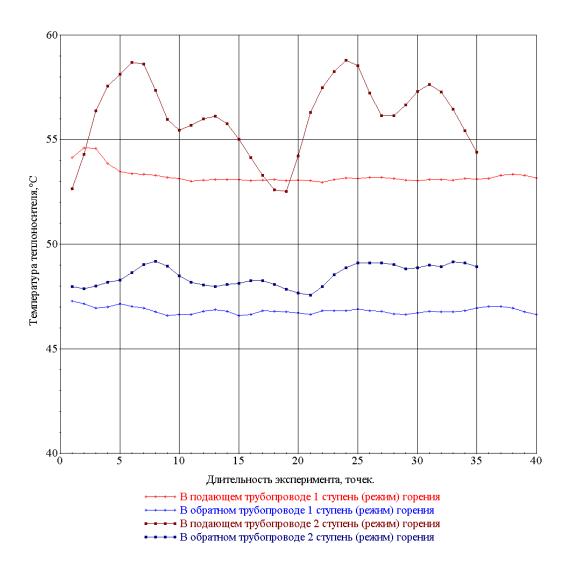


Рис. 3. – Температура теплоносителя в точке измерения при работе котлоагрегата №2

Допустимое превышение удельного расхода газа в периоды проведения измерения обусловлено незначительным отклонением настроечных значений от рекомендованных при данной мощности.

Запас установленной мощности котельной позволил произвести настройки мощности второй ступени горения на значениях, близких к минимальным, что позволило оптимизировать режим горения, теплоотдачи и теплосъема.

На основании анализа полученных результатов экспериментальных измерений сформулированы рекомендации по согласованию мощности теплогенератора и горелочного устройства [9].

Выбор горелочного устройства желательно согласовывать с рекомендациями производителей с учетом возможной настройки мощности горелочного устройства на высшей ступени горения на уровне 70 и менее % от установочной мощности котлоагрегата.

Настройки мощности горелочного устройства могут быть уточнены в сторону повышения только по результатам составления и оценки топливного баланса (не менее 2-3 часовой работы котлоагрегата с горелочным устройством в режиме максимального горения) [10].

Мощность малого режима горения в котельных с обеспечением тепловой энергией для отопительно-вентиляционных целей должна соответствовать среднему прогнозному отклонению тепловой нагрузки, полученному на основании анализа результатов мониторинга параметров наружного воздуха за последние три года. В котельных, производящих тепловую энергию в т.ч. на цели ГВС, мощность малого режима горения должна соответствовать средненедельной тепловой нагрузке потребителей горячей воды.

Литература

- 1. Ениватов А.В., Артемов И.Н., Савонин И.А. Оптимизация тепловой схемы котельной с утилизатором тепла дымовых газов // Инженерный вестник Дона, 2018, №1. URL: ivdon.ru/magazine/archive/n1y2018/4746.
- 2. Ениватов А.В. Артемов И.Н, А.В. Неясов А.С. Оптимизация топливоиспользования в блочно-модульных котельных // Инженерный вестник Дона, 2019, №1. URL: ivdon.ru/magazine/archive/n1y2019/5672.
- 3. Лаврентьев А.В., Наумов С.А., Горячев С.В. Увеличение полноты сгорания топлива в газовой горелке путем расширения диапазона ее

регулирования // Теплогазоснабжение: состояние, проблемы, перспективы: сб. материалов всерос. науч.-практ. конф, 16-17 нояб. 2011. - Оренбург: ООО "НикОс", 2011. - С.90-92.

- 4. Бельская Т.И. О выборе горелочных устройств для котлоагрегатов малой мощности при реконструкции муниципальных котельных и других топливосжигающих установок // Омск. науч. вестн. 2016. N 1(145). C.55-57.
- 5. Борисов А.А. Выбор горелочных устройств для малопроизводительных котлоагрегатов // Энергия-2019: материалы 14-ой междунар. науч.техн. конф. студентов, аспирантов и молодых ученых, Иваново, 2-4 апр. 2019. В 6 т. Т.1. Теплоэнергетика. Иваново: ИГЭУ, 2019. С.131-132.
- 6. Лысяков А.И., Артемов И.Н., Ениватов А.В., Зинкин Д.А., Цыцарева Е.И. Анализ отклонений основных параметров работы котлоагрегатов в период эксплуатации. Саранск. 2013.-С. 251-221.
- 7. Никифоров Г.В. Энергоэффективные системы отопления. Изд. 3-е, перераб. и доп. Магнитогорск: Магнитогорский дом печати, 2011. 163 с.
- 8. Соколов Е.Я. Теплофикация и тепловые сети: Учебник для вузов. 7 е изд. Издательство МЭИ, 2001. с.472.
- 9. Keil R.H., Baird M.N. Enchancement of Heat Transfer by Flow Pulsation.-"Industrial Engineering Chemistry Process Desing and Development USA", vol.10, 1971, N 4, pp.473-478.
- 10. West F.B., Taylor A.T. The effect of pulsations on heat transfer-turbulent flow of water inside tubes. «Chemical Engineering Progress», vol. 48, N.1. PP.39-43.

References

1. Enivatov A.V., Artemov I.N., Savonin I.A. Inzhenernyj vestnik Dona, 2018, №1. URL: ivdon.ru/magazine/archive/n1y2018/4746.

- 2. Enivatov A.V. Artemov I.N, Neyasov A.S. Inzhenernyj vestnik Dona, 2019, №.1 URL: ivdon.ru/magazine/archive/n1y2019/5672.
- 3. Lavrent'yev A.V., Naumov S.A., Goryachev S.V. Uvelicheniye polnoty sgoraniya topliva v gazovoy gorelke putem rasshireniya diapazona ye regulirovaniya [Increasing the completeness of fuel combustion in a gas burner by expanding the range of its regulation]. Orenburg. 2011. pp. 90-92.
- 4. Bel'skaya T.I. O vybore gorelochnykh ustroystv dlya kotloagregatov maloy moshchnosti pri rekonstruktsii munitsipal'nykh kotel'nykh i drugikh toplivoszhigayushchikh ustanovok. [On the choice of burners for low-power boilers during the reconstruction of municipal boiler houses and other fuel-burning plants]. Omsk. 2016. pp. 55-57.
- 5. Borisov A.A. Vybor gorelochnykh ustroystv dlya maloproizvoditeľnykh kotloagregatov. [The choice of burners for low performance boilers]. Ivanovo. 2019. pp. 131-132.
- 6. Lysyakov A.I., Artemov I.N., Enivatov A.V., Zinkin D.A., Tsytsareva Y.I. Analiz otkloneniy osnovnykh parametrov raboty kotloagregatov v period ekspluatatsii [Analysis of deviations of the main parameters of the boiler units operation during operation]. Saransk. 2013. pp. 251-221.
- 7. Nikiforov G.V. Energoeffektivnyye sistemy otopleniya. [Energy efficient heating systems]. Magnitogorsk. 2011. 163 p.
- 8. Sokolov Teplofikatsiya i teplovyye seti. [Heating and heating networks]. Moskva. 2001. 472 p.
- 9. Keil R.H., Baird M.N. Enchancement of Heat Transfer by Flow Pulsation. "Industrial Engineering Chemistry Process Desing and Development USA", vol.10, 1971, N 4, pp. 473-478.
- 10. West F.B., Taylor A.T. The effect of pulsations on heat transfer-turbulent flow of water inside tubes. «Chemical Engineering Progress», vol. 48, N.1. pp. 39-43.