Исследование взаимодействия колеса с опорным основанием

Т.Д. Дмитриева, А.С. Котков, А.А Васильев, М.В. Сидоров, А.И. Пономарев Калужский филиал «Московский государственный технический университет им. Н.Э. Баумана», Калуга

Аннотация: В статье описано исследование поведения вектора реакции в пятне контакта колеса с опорным основанием при вариации значений угла поворота ведущих колес. Для нахождения зависимости величин была создана модель MATLAB Simulink с программными блоками, позволяющими определить поведения вектора реакции в пятне контакта колеса с опорным основанием при вариации значений угла поворота ведущих колес.

Ключевые слова: управляемость, математическая модель, колесная машина, моделирование, шина колеса, угол поворота колеса, MATLAB Simulink.

Введение. Из всего многообразия движения колеса в настоящее время широко изучены такие основные режимы движения колеса, как ведущий, ведомый и тормозной. Однако большинство публикаций посвящены взаимодействию колеса с опорной поверхностью при прямолинейном движении колесной машины, или при криволинейном движении, но относительно неподвижной системы координат, жестко связанной с опорной В условиях поверхностью. реальных поворот происходит колеса относительно корпуса колесной машины и изучение изменения нагрузки для ведущего режима управляемого колеса имеет определенный интерес при создании механизма управления траекторией движения колесной машины.

Цель данной работы - анализ зависимости реакции в пятне контакта колеса с опорным основанием при вариации значений угла поворота ведущих колес с помощью модели в программе MATLAB Simulink. Данное исследование позволит уточнить нагрузки, возникающие при взаимодействии колеса с опорной поверхностью при повороте управляемых колес с учетом криволинейного движения, что позволит найти оптимальный угол поворота колёс, а также разработать наиболее приемлемый механизм управления поворотом [1, 2].

Методы. Для проведения исследования рассмотрим схему одного колеса из многоосного автомобиля и его взаимодействие с опорным основанием. Воспользуемся тремя системами координат [3-5]: неподвижную систему координат (НСК) $X_2O_2Y_2$, подвижную систему координат (ПСК) OXY и микроподвижную систему координат (МПСК) $O_TX_TY_T$ (рис. 1).

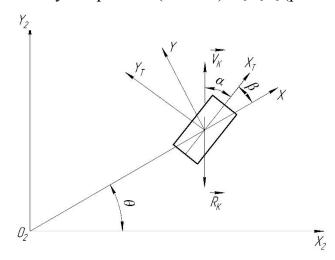


Рис. 1. - Схема взаимоположения осей неподвижной системы координат, подвижной системы координат и микроподвижной системы координат: V_{κ} – поступательная скорость колеса; α – угол между осью X_{T} микроподвижной системы координат и поступательной скоростью колеса; β – угол поворота колеса; Θ – угол направления движения; $\overrightarrow{R}_{\kappa}$ – реакция со стороны опорного основания на колесо

Вектор реакции со стороны опорного основания в плоскости $X_2O_2Y_2$ определим, согласно формуле [6, 7]:

$$\vec{R}_{\mathrm{K}i} = -\mu_{\mathrm{S}} |N_i| \frac{\overrightarrow{V_{\mathrm{CK}i}}}{|V_{\mathrm{CK}i}|'}$$

где μ_5 — коэффициент сцепления; N_i — нормальная реакция со стороны опорной поверхности в неподвижной системе координат; — вектор поступательной скорости колеса в неподвижной системе координат.

Коэффициент сцепления при частичном скольжении колеса:

$$\mu_s = \mu_{samax} \left(1 - e^{\frac{S_{\text{K}}}{S_0}} \right) \left(1 + e^{\frac{S_{\text{K}}}{S_1}} \right)$$

где μ_{samax} — максимальное значение коэффициента сцепления; S_{κ} — коэффициент скольжения; S_0 и S_1 — постоянные значения.

Коэффициент скольжения [8]:

Коэффициент скольжения [8]:

$$S_{\kappa} = \frac{V_{\kappa X_{\mathrm{T}}} - \omega_{\kappa} r_{\mu}}{\omega_{\kappa} r_{\mu}},$$

где $V_{\kappa X_{\mathrm{T}}}$ – проекция поступательной скорости колеса на ость Xт МПСК;

 ω_{κ} — угловая скорость колеса; $r_{\!\scriptscriptstyle \rm I\!\!\! J}$ — динамический радиус колеса.

Проекции вектора поступательной скорости центра колеса в МПСК:

$$V_{\kappa X_T} = V_{\kappa X} \cos \beta + V_{\kappa Y} \sin \beta;$$

$$V_{\kappa Y_T} = -V_{\kappa X} \sin \beta + V_{\kappa Y} \cos \beta;$$

где $V_{\kappa X}$, $V_{\kappa Y}$ и $V_{\kappa Z}$ — проекции поступательной скорости колеса на ось X, Y и Z подвижной системы координат; β — угол поворота колеса.

Скорость скольжения колеса в микроподвижной системе координат можно определить:

$$V_{CK} = \sqrt{V_{X_{CK}}^2 + V_{Y_{CK}}^2}$$

$$V_{X_{CK}} = V_{\kappa X_T} - \omega_k \cdot r_{\partial}$$

$$V_{Y_{CK}} = V_{\kappa Y_T}$$

Проекции реакции взаимодействия шины с опорным основанием в микроподвижной системе координат на оси $X_{\rm T}$ и $Y_{\rm T}$:

$$R_{\kappa X_T} = R_{\kappa} \cos \alpha$$

$$R_{\kappa Y_T} = R_{\kappa} \sin \alpha$$

Проекции реакции взаимодействия шины с опорным основанием в подвижной системе координат на оси X, Y и Z:

$$R_{\kappa X} = R_{\kappa X_T} \cos \beta - R_{\kappa Y_T} \sin \beta;$$

$$R_{\kappa Y} = -R_{\kappa X_T} \sin \beta + R_{\kappa Y_T} \cos \beta;$$

$$R_{\kappa Z} = R_{\kappa Z_T} \cos \varphi \cos \psi.$$

где φ – угол дифферента; ψ – угол крена.

Вертикальная реакция от деформируемой шины $R_{{\bf k}Z_T}$ состоит из суммы реакций: упругой $R_{{\bf k}Z_T}^y$ и амортизирующей $R_{{\bf k}KZ_T}^{\cal A}$, которые определяются через прогиб $h_{\bf k}$ и скорость изменения $\dot h_{\bf k}$ прогиба шины :

$$R_{\kappa Z_T}^{y} = R_{\kappa Z_T}^{y}(h_k);$$

$$R_{\kappa K Z_T}^{A} = R_{\kappa K Z_T}^{A}(\dot{h}_k);$$

$$R_{\kappa Z_T} = R_{\kappa Z_T}^{y} + R_{\kappa K Z_T}^{A}.$$

где h_{κ} — прогиб шины; \dot{h}_{κ} —скорость изменения прогиба в шине;

Для реализации рассмотренной математической модели используем аппарат программы MATLAB Simulink, широко применяющейся при решении подобных задач [9, 10]. Программный блок «TYRE_FORCES» служит для определения проекций вектора реакции со стороны опорного основания в плоскости $X_2O_2Y_2$ неподвижной системы координат (рис. 2). Вертикальную проекцию вектора реакции со стороны шины в неподвижной системе координат определяем отдельным блоком (рис. 2).

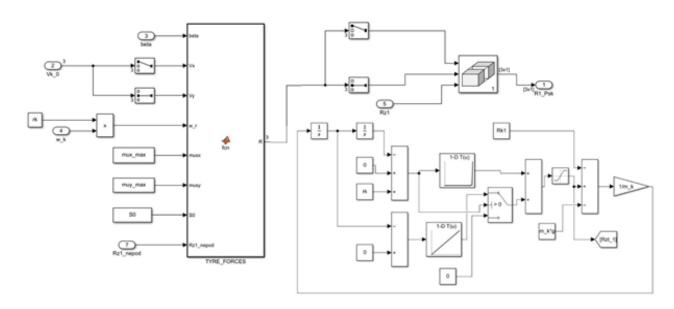


Рис. 2 — Программный блок для определения проекций вектора реакции со стороны опорного основания в плоскости $X_2O_2Y_2$ неподвижной системы координат

На выходе из программного блока получим:

R = [Rx; Ry; Rxt] - вектор реакции со стороны опорного основания,
здесь <math>Rx и Ry — проекции реакции в пятне контакта на оси X и Y ПСК соответственно; R_{xt} — проекция реакции в пятне контакта на ось X_T МПСК.

R_Psk — вектор реакции взаимодействия шины первого колеса с опорным основанием в ПСК

В блоке «TYRE FORCES» реализуется алгоритм вычисления:

```
function R = fcn(beta, Vx, Vy, w r, musx, musy, S0, Rz1 nepod)
%#codegen
S1=0.1;
Vxt=Vx*cos(beta)+Vy*sin(beta); %вычисление проекции V на ось X МПСК
Vyt=-Vx*sin(beta)+Vy*cos(beta); %вычисление проекции V на ось У МПСК
V sk=Vxt-w r; %вычисление проекции скорости скольжения центра колеса
на ось Х МПСК
Vck=sqrt(Vyt*Vyt+V sk*V sk); %вычисление модуля вектора скольжения
%вычисление коэффициента трения частичного скольжения;
   if abs(Vck) > 0
    sina=Vyt/(sqrt(Vyt*Vyt+V sk*V sk));
    cosa=sqrt(1-sina*sina);
   else
     sina=0;
     cosa=1;
   end
```

```
Sk=V_sk/w_r; %Коэффициент скольжения musamax=musx*musy/sqrt(musx^2*sina^2+musy^2*cosa^2); %коэф трения полного скольжения в соответствии с эллипсом трения mus=musamax*(1-exp(Sk/S0))*(1+exp(Sk/S1)); %коэф частичного трения для связных грунтов %вычисление peakций Rk=-mus*abs(Rz1_nepod)*Vck/abs(Vck); Rxt=Rk*cosa; %проекция на ось X МПСК Ryt=Rk*sina; %проекция на ось X МПСК Rx=Rxt*cos(beta)-Ryt*sin(beta); %проекция на ось X ПСК Ry=-Rxt*sin(beta)+Ryt*cos(beta); %проекция на ось У ПСК R = [Rx;Ry;Rxt]
```

Результаты. Изменения реакции в пятне контакта колеса с опорным основанием по осям X, Y и Z, а также результирующей силы реакции, в зависимости от угла поворота колеса, представлены на рис. 3. С увеличением угла поворота колес реакция со стороны опорной поверхности по оси $X_{\scriptscriptstyle T}$ микроподвижной системы координат пропорционально увеличивается.

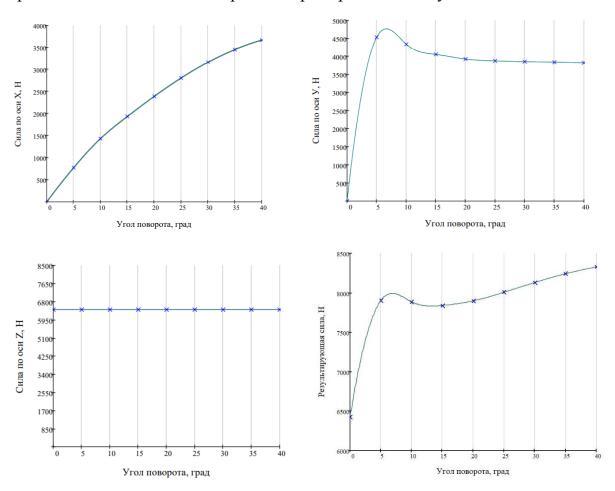


Рис. 3 – Изменения сил по осям и их результирующей в зависимости от угла поворота колеса

Реакция, возникающая со стороны опорной поверхности по оси $\rm Y_{\rm T}$ микроподвижной системы координат с увеличением угла поворота колес на 5-10 градусов резко возрастает до значения 4532 H, при дальнейшем повороте колеса она уменьшается и находится в диапазоне от 3800 до 4000 H. Реакция, возникающая со стороны опорной поверхности по оси $\rm Z_{\rm T}$ микроподвижной системы координат не изменяется при увеличении угла поворота колес.

Выводы. Анализ полученных результатов позволяет отметить, что при малых углах поворота колеса наблюдается резкое повышенное значения нагрузки на шину, прирост которой в дальнейшем снижается и, при увеличении значения угла поворота более 40^{0} , стремится принять постоянное значение.

Литература

- Полунгян А.А. Математическая модель динамики трансмиссии колесной машины при движении по твердой неровной дороге // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2003. №4. С. 15-25.
- 2. Карпов А.А., Карпов М.А., Судейко О.В., Сидоров М.В., Горликов В.А. Моделирование трансмиссии автомобиля с помощью программы Simulink // Инженерный вестник Дона, 2022. №6. URL: ivdon.ru/ru/magazine/archive/n13y2021/7353.
- 3. Вольская Н.С., Жилейкин М.М., Захаров А.Ю., Паньшин М.В. Квазиконечная-элементная модель качения эластичного колеса по неровностям деформируемого опорного основания при криволинейном движении колесной машины. // Известия МГТУ «МАМИ». 2018. №2(36). С. 30-40.
- 4. Скрынников А.В., Шихин А.В., Попов А.А., Сидоров В.Н. Моделирование взаимодействия шины колеса с опорным основанием

опорно-ходового модуля // Инженерный вестник Дона. 2022. №6. URL: ivdon.ru/ru/magazine/archive/n6y2022/7695.

- 5. Полковникова Н.А. Научные и инженерные расчеты в среде Matlab. М.: МОРКНИГА. 2019. 143 с.
- 6. Попов С.Д. Внешняя механика автомобильного колеса с эластичной шиной. Часть 2: Плоское стационарное качение колеса по плоской твердой опорной поверхности. М: МГТУ им. Н.Э. Баумана. 2011. 70 с.
 - 7. Wong J.Y. Theory of Ground Vehicles. New York: Wiley IEEE. 2001. 369 c.
 - 8. Агейкин Я.С., Вольская Н.С. Теория автомобиля. М.: МГИУ. 2008. 318 с.
- 9. Сидорова А.В., Степин П.И., Сидоров В.Н. Имитационное моделирование колебаний центра масс колесной машины с помощью программы Simulink // Инженерный вестник Дона. 2020. №4. URL: ivdon.ru/ru/magazine/archive/n4y2020/6395.
- 10. Жилейкин М.М. Математические модели систем транспортных средств: методические указания. М: МГТУ им. Н.Э. Баумана. 2018. 100 с.

References

- 1. Polungyan A.A. Vestnik MGTU im. N.E`. Baumana. Ser. Mashinostroenie. 2003. №4. pp. 15-25.
- 2. Karpov A.A., Karpov M.A., Sudeiko O.V., Sidorov M.V., Gorlikov V.A. Inzhenernyj vestnik Dona, 2022. №6. URL: ivdon.ru/ru/magazine/archive/n13y2021/7353.
- 3. Volskaya N.S., Zhileikin M.M., Zakharov A.Yu., Panshin M.V. Izvestia of MSTU "MAMI". 2018. №2(36). pp. 30-40.
- 4. Skrynnikov A.V., Shikhin A.V., Popov A.A., Sidorov V.N. Inzhenernyj vestnik Dona, 2022. №6. URL: ivdon.ru/ru/magazine/archive/n6y2022/7695

- 5. Polkovnikova N.A. Nauchny'e i inzhenerny'e raschety' v srede Matlab [Scientific and engineering calculations in the Matlab environment]. M.: MORKNIGA. 2019. 143 p.
- 6. Popov S.D. Vneshnyaya mexanika avtomobil`nogo kolesa s e`lastichnoj shinoj. Chast` 2: Ploskoe stacionarnoe kachenie kolesa po ploskoj tverdoj opornoj poverxnosti [External mechanics of an automobile wheel with an elastic tire. Part 2: Flat stationary rolling of a wheel on a flat solid support surface] M.: MGIU. 2011. 70 p.
 - 7. Wong J.Y. Theory of Ground Vehicles. New York: Wiley IEEE. 2001. 369 p.
- 8. Agejkin Ya.S., Vol`skaya N.S. Teoriya avtomobilya [Theory of the car]. M.: MGIU. 2008. 308 p.
- 9. Sidorova A.V., Stepin P.I., Sidorov V.N. Inzhenernyj vestnik Dona. 2020. №4. URL: ivdon.ru/ru/magazine/archive/n4y2020/6395.
- 10. Zhilejkin M.M. Matematicheskie modeli sistem transportny`x sredstv: metodicheskie ukazaniya [Homework for the course "Modeling of vehicle systems": methodical instructions]. M.: MGTU im. N.E. Baumana. 2018. 100 p.