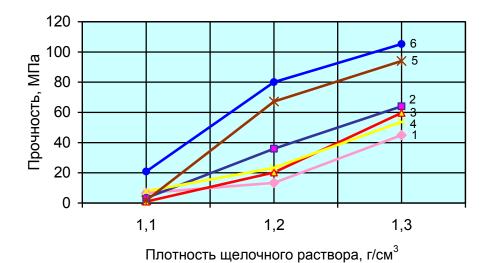
Оптимизация составов шлакощелочных вяжущих при реконструкции зданий и сооружений

Б.К. Сарсенбаев 1 , Ж.Т. Айменов 1 , К.Е. Иманалиев 1 , Л.С. Сабитов 2,3 , И.Н. Гарькин 4 , Ф.М. Ахметов 2

1 Южно-Казахстанский Исследовательский Университет им.М.Ауезова
 2 Казанский (Приволжский) федеральный университет
 3 Казанский государственный энергетический университет
 4 Московский государственный университет технологий и управления им. К.Г. Разумовского (Первый казачий университет)

Аннотация: Исследованы основные свойства шлакощелочных вяжущих для определения их оптимального состава. Экспериментально доказана возможность управления свойствами разработанных вяжущих на основе фосфорного и доменного шлаков путем введения корректирующих добавок в алюмосиликатную составляющую вяжущих, а также шлакощелочных изменением вида щелочного компонента. Проведенные исследования подтверждают эффективность применения щелочных сульфатсодержащих компонентов для получения шлакощелочных вяжущих. В результате проведенных экспериментов получены шлакощелочные вяжущие с активностью от 30 до 110 МПа. Установлена возможность регулирования свойств разработанных шлакощелочных вяжущих. Вяжущее требуемой прочности достигается путем корректировки состава алюмосиликатного компонента введением добавок и вида щелочного компонента.

Ключевые слова: щлакошелочные вяжущие, шлаки, оптимальный состав, основность, хромпик, строительные материалы, реконструкция, технология работ.


С целью установления оптимального состава шлакощелочного вяжущего были исследованы основные свойства в зависимости от их составов. Активность исследуемых вяжущих изучалась с учетом вида алюмосиликатной составляющей и щелочного компонента шлакощелочного вяжущего. В первую очередь были изучены влияния плотности и силикатного модуля жидкого стекла на активность шлакощелочного вяжущего [1,2].

При изучении влияния плотности щелочного раствора на прочность шлакощелочного вяжущего на Жамбылском гранулированном фосфорном шлаке пользовались жидким стеклом с разными силикатными модулями. При этом р/ш была постоянной и была равна 0,28.

Экспериментальные исследования

Исследованиями установлено (рис.1), что на прочность шлакощелочного вяжущего существенное влияние оказывают не только плотность и силикатный модуль щелочного раствора, а также условия хранения образцов. Установлено, что тепловлажностная обработка образцов вяжущего, по режиму 2+2+8+2 при изотермической выдержке 80°C благоприятно влияет на прочность вяжущего.

Установлено, что образцы, прошедшие тепловлажностную обработку (№4-6) в 28 суточном возрасте имеют примерно на два раза выше [3,4] прочность на сжатие по сравнению с образцами (№1-3), хранившимися в нормальных условиях без тепловлажностной обработки.

1,4 - M_c =3; 2,5 - M_c =2; 3,6 - M_c =1 1, 2, 3 -Образцы твердевшие в естественных условиях;

Рис.1. Влияние силикатного модуля и плотности

щелочного компонента раствора силиката натрия на прочность вяжущего в 28 суточном возрасте

При плотности 1,1 г/см³ образцы имели сравнительно низкую прочность. Увеличение плотности раствора силиката натрия, т.е. повышение концентрации щелочи в растворе приводит к повышению прочности вяжущего. При плотности жидкого стекла 1,2 г/см³ образцы (№1-3) хранившиеся в нормальных условиях имели прочность 13,5; 35,9 и 20,3 МПа, соответственно при силикатном модуле раствора силиката натрия 3; 2 и 1. Те же образцы, прошедшие тепловлажностную обработку, показали прочность соответственно 23,3;67,2 и 80 МПа. [5,6]

Полученные результаты показывают, что снижение силикатного модуля щелочного раствора от 3 до 1 также приводит к увеличению прочности примерно в два раза. Повышение плотности раствора до 1,3 г/см³ и снижение силикатного модуля привело к увеличению прочности вяжущего, соответственно, до 53,7;94 и 105,3 МПа. С повышением плотности щелочного компонента концентрация щелочи соответственно увеличивается, на наш взгляд, что способствует протеканию более глубокой гидратации вяжущей системы.

Полученные результаты согласуются с данными [7,8], значит, управлять свойствами шлакощелочных вяжущих можно, не только регулируя основную алюмосиликатную составляющую, но и щелочной компонент.

В проведенных исследований [9,10] ходе ранее установлена принципиальная возможность получения шлакощелочных вяжущих на К основе доменных шлаков. таким относится Карагандинский гранулированный доменный шлак, являющийся наиболее качественным алюмосиликатным компонентом для производства шлакощелочных вяжущих в регионе Казахстана.

Исходя из полученных данных [11], о влиянии силикатного модуля и плотности щелочного компонента на прочность вяжущего на основе фосфорного шлака, в дальнейших исследованиях по получению шлакощелочного вяжущего на основе доменного шлака были проведены исследования влияния M_c щелочного компонента на активность вяжущего. При этом, плотность щелочного компонента была равна 1,3 г/см³, а р/ш, соответственно, 0,28.

Полученные результаты (рис.2), показывают, что шлакощелочные вяжущие на основе доменного шлака и силикатном щелочном компоненте с разными M_c , в отличии от вяжущих композиций на фосфорном шлаке, имеют относительно другие показатели прочности при сжатии.

Вяжущее, затворенное с жидким стеклом ($M_c = 3$), имело предел прочности при сжатии после ТВО равной 81,0 МПа. Прочность через 28 сут повысилась всего на 9% и составила 89 МПа.

Понижение M_c жидкого стекла до 2 привело к незначительной снижению прочности камня вяжущего, которая была равна 95,0 и 107,0 МПа, после ТВО и через 28 сут.

Вяжущее, затворенное щелочным компонентом, имеющее $M_c=1$, после ТВО обладает пределом прочности при сжатии - 97,0 МПа и через 28 сут, соответственно, 115,5 МПа.

Эти данные еще раз подтверждают, что со снижением силикатного модуля жидкого стекла прочность вяжущего повышается. Это связано с тем, что со снижением M_c в щелочном растворе количество щелочи повышается, что способствует интенсивному протеканию процесса гидратации.

Из анализа результатов испытаний следует, что наиболее серьезное влияние режим ТВО и плотность раствора щелочного компонента оказывает при использовании фосфорного шлака. Сравним составы вяжущих, затворенных жидким стеклом, с идентичными M_c , на основе фосфорного

(рис.1) и доменного шлаков (рис.2). Прочность камня вяжущего на основе фосфорного шлака после ТВО составляет после от 56 до 84% от 28 суточного возраста. Вяжущие на основе доменного шлака после пропарки имеют прочность при сжатии от 84 до 91% от 28 суточного возраста.

Очевидно, это связано с тем, что фосфорный шлак по модулю основности относится к основным, но по содержанию Al_2O_3 является кислым шлаком. На первый взгляд, это можно объяснить некоторым отличием структур доменных и фосфорных шлаков: незначительным содержанием в последнем P_2O_5 И повышенным содержанием SiO_2 . Наличие комплексов фосфорсодержащих способствует увеличению дефицита кислорода шлаковом стекле, что приводит полимеризации кремнекислородных анионов, обуславливающей снижение гидравлической активности шлаков в начальный период.

Полученные результаты позволяют сделать предварительный вывод о целесообразности щелочных компонентов на основе силикатных щелочных солей.

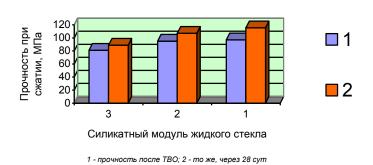


Рис. 2. Влияние M_c щелочного компонента на прочность ШЩВ на основе КГДШ

Известно [12], что активность и скорость набора прочности шлакощелочных вяжущих поддается регулированию за счет изменения

основности щелочного компонента и шлака, а также вследствие введения добавок минерального и органического характера.

В дальнейших работах нами продолжены исследования по разработке шлакощелочных вяжущих на основе гранулированных фосфорного и доменного шлаков и силикатных щелочных компонентов. На данном этапе, с целью изменения M_c жидкого стекла, в сочетании с жидким стеклом, нами использовался хромпик (шлам сернистого натрия - отход производства оксида хрома металлургического). Хромпик, являясь отходом производства, образуется виде шлама, химический состав которого состоит, преимущественно, из солей сильных кислот до 85% из тиосульфата натрия, $Na_2SO_{3 \text{ до}}$ 8,1%, Na_2CO_3 до 7,2%, а также в его составе имеются по 1% Na_2S и Cr_2O_3 . Присутствие Na_2S придает шламу специфический запах.

В исследованиях пользовались жидким стеклом с $\rho = 1,3$ г/см³ и $M_c = 3$. Из хромпика также готовили водный раствор с $\rho = 1,2$ г/см³. Из подготовленных водных растворов жидкого стекла и хромпика готовили перемешиванием щелочной компонент для затворения вяжущего.

Исследованиями установлено, что шлакощелочные вяжущие на основе фосфорного шлака и жидкого стекла в сочетании с хромпиком являются быстросхватывающимися. Определение предела прочности при сжатии и сроков схватывания оказалось трудной задачей, так как эти вяжущие сразу схватываются при перемешивании. Изучение их свойств не проводилось, так как их невозможно использовать в строительной практике.

Полученные результаты о влиянии хромпика на прочностные показатели вяжущего на основе доменного шлака (рис.3), показывают, что при добавке к жидкому стеклу 25% от объема щелочного компонента, прочность камня вяжущего повышается всего на 2% от прочности контрольного вяжущего, без добавки хромпика. Дальнейшее увеличение

количества хромпика в составе щелочного компонента привело к снижению прочности по сравнению с контрольным.

Все образцы, имеющие в составе щелочного компонента хромпик, повышают свою прочность во времени, но по сравнению с показателями идентичных образцов это увеличение оказалось незначительным.

Необходимо отметить, что увеличение количества хромпика в составе щелочного компонента оказывает благотворное влияние на сроки схватывания вяжущего, т.е. по мере увеличения количества хромпика в составе вяжущего, сроки схватывания удлиняются.

Такое снижение прочности и удлинение сроков схватывания может объяснить, что с кислым характером доменного шлака и по мере увеличения количества хромпика В составе щелочного компонента, основность последнего также снижается, впоследствии количество коллоидного кремнезема, вводимого в вяжущую систему, тоже уменьшается. Коллоидный вводимый с щелочными силикатами, кремнезем, является основным структурообразующим элементом твердеющей системы, что влияет на кинетику набора прочности и объясняет высокую прочность шлакощелочных вяжущих на основе этих соединений, особенно в начальные сроки твердения.

Рис.3. Влияние хромпика на прочность ШЩВ на основе доменного шлака

Установлено, что затворение доменного шлака с водным раствором хромпика с $\rho = 1,2$ г/см³ позволило получить вяжущее, после ТВО, с пределом прочности камня вяжущего 20,0 МПа. Образец этого же состава со временем повысил свою прочность и через 28 сут показал прочность при сжатии, равную 36,6 МПа. Такая прочность на растворе хромпика достигнута за счет высокой концентрации щелочного компонента. При низкой концентрации данного раствора, из-за низкой активности сульфатсодержащих компонентов хромпика, приготовленные образцы не твердеют. Управлять свойствами шлакощелочных вяжущих систем можно путем изменения основности шлака или щелочного компонента посредством введения корректирующих добавок.

Полученные данные о наличии вяжущих свойств композиций на основе рассматриваемых шлаков и хромпика явились основанием для изучения активности таких композиций с высокоосновной добавкой. В качестве добавки использовали портландцемент. Эксперименты показали, что активность вяжущего на основе хромпика зависит от плотности последнего, количества портландцемента и вида шлака. Кроме того, надо отметить, что ТВО благоприятно влияет на активность вяжущих композиций, приготовленных с использованием хромпика. Образцы таких вяжущих, твердевшие в нормальных условиях, показали низкую прочность [13,14].

Установлено (табл.1), что при затворении фосфорного шлака без добавки, с водным раствором хромпика с $\rho = 1,05$ г/см³, вяжущее не твердеет. По мере увеличения плотности водного раствора предел прочности камня вяжущего увеличивается и самое максимальное значение (36,6 МПа) приобретает через 28 сут после ТВО. Добавка портландцемента в количестве 5% от массы ЭТФ шлака привело к повышению прочности и самое максимальное значение (73,2 МПа) при плотности водного раствора хромпика - 1,1 г/см³. Это можно объяснить тем, что добавка цементов

обеспечивает появление на стадии твердения множество центров кристаллизации, что препятствует росту крупных кристаллов и способствует созданию более равномерной структуры цементного камня без крупных пор [15]. Повышение плотности водного раствора хромпика до $\rho = 1,2$ г/см³ привело к снижению прочности почти в два раза.

 Таблица 1. Состав и прочностные свойства шлакощелочного вяжущего с

 использованием хромпика

	Вид	Содержание	ρ, водного	Предел прочности при		
No	шлака	ПЦ, %	раствора	сжатии, МПа		
			хромпика	после ТВО	после 28 сут	
			Γ/cm^3		твердения	
1		0	1,05	Не тв	ердеет	
2			1,1	11,3	13,2	
3	ФГШ		1,2	30,0	36,6	
4		5	1,05	26,2	34,3	
5			1,1	62,3	73,2	
6			1,2	41,2	48,3	
7		10	1,05	21,5	24,3	
8			1,1	42,1	46,8	
9			1,2	38,2	41,3	
10		0	1,05	Не тв	ердеет	
11			1,1			
12			1,2	20,0	32,8	
13	ДГШ	5	1,1	21,1	33,9	
14			1,2	15,0	26,4	
15		10	1,1	14,5	18,8	

Дальнейшее увеличение количества добавки портландцемента независимо от плотности водного раствора хромпика привело к снижению прочности камня вяжущего.

Это явление может быть объяснено следующим образом. При относительно малых количествах добавки портландцемента твердеющая шлаковая система является вяжущим с добавкой цемента. С повышением содержания цемента (до 15÷20% и более) система уже приобретает свойства шлакопортландцемента. И вполне возможно, что при переходе системы из одного вида в другой, прочность ее заметно будет снижаться, так как механизм твердения шлакового композиционного вяжущего и шлакопортландцемента различны и существенным образом влияют на активность системы [16].

Та же закономерность наблюдается при затворении водным раствором хромпика доменного шлака. Но полученные результаты показывают, что вяжущие композиции, приготовленные на растворе с плотностью 1,05 и 1,1 г/см³ при ТВО, не твердеют. Увеличение плотности водного раствора щелочи позволило получить прочность вяжущего после ТВО 20,8 МПа и соответственно через 28 сут 32,8 МПа.

Добавка портландцемента в рассматриваемую композицию привело к повышению прочности, но это повышение примерно в два раза ниже, чем прочность композиций, приготовленных на фосфорном шлаке. Так, например, самую максимальную прочность (33,9 МПа), вяжущее имеет при плотности водного раствора хромпика $\rho = 1,1$ г/ см³.

Таким образом установлено, что с использованием водного раствора хромпика $\rho = 1,1$ г/ см³ можно получить вяжущее на основе фосфорного шлака, с активностью 73,2 МПа, а на основе доменного шлака - 33,9 МПа.

Одним из таких компонентов, как хромпик, является содосульфатная смесь (ССС) – отход капролактамового производства. Она состоит из солей

сильных и слабых кислот. В отличие от хромпика, ССС образуется в сухом виде, которая представлена твердыми пластинами, растворимыми в воде.

Разработан щелочной компонент КЩК – состоящий из жидкого стекла и ССС. В литературе приводятся, в основном, данные о шлакощелочных вяжущих на основе фосфорного шлака и КШК – 1. В наших исследованиях нами был апробирован этот щелочной компонент для получения вяжущего с использованием доменного шлака. Использование щелочного компонента, состоящего из жидкого стекла, $\rho = 1,3$ г/см³ и водного раствора ССС $\rho = 1,2$ г/см³ в соотношении 1:1 по объему позволило получить вяжущее с активностью до 107,5 МПа, через 28 сут после ТВО.

Однако составы вяжущих на доменном шлаке и щелочном компоненте - ССС не разработаны. Анализ ранее проведенных исследований позволил предположить возможность создание вяжущего с использованием содосульфатной смеси, корректировка состава которого была осуществлена также за счет введения высокоосновной добавки — портландцемента. Вяжущее можно готовить совместным помолом в шаровой мельнице всех составляющих компонентов и с последующим затворением водой.

Изучение физико-механических свойств вяжущих на основе доменного шлака, ССС и портландцемента показало (таблица 2), что при совместном помоле всех компонентов вяжущего его активность колеблется в пределах 19,7 ÷ 40,0 МПа. При этом, наилучшие результаты 35÷40,0 МПа достигаются после ТВО образцов шлакощелочного вяжущего.

Следует отметить, что состав вяжущего без введения портландцемента не твердеет. Это, по-видимому, объясняется кислым характером (M_o <1) доменного шлака.

Сроки схватывания вяжущих композиций на основе доменного шдака, ССС и портландцемента представлены в табл. 3. Полученные результаты исследований показывают, что вяжущее, состоящее из

доменного шлака и ССС, без добавки портландцемента, даже при ТВО не твердеет, поэтому его сроки схватывания не определялись. Из полученных результатов видно, что при добавке портландцемента в количестве 3 % от массы шлака, вяжущее имеет начало схватывания - 3 ч.17 мин и конец, соответственно, 4 ч 20 мин. Увеличение количества добавки портландцемента ускоряет сроки схватывания, и добавка портландцемента, 8 % от массы шлака, привело к ускорению сроков схватывания вяжущего. При этом, время начала схватывания сократилось в 1,5 раза и составило 2 часа и конец, соответственно, сократился в 1,23 раза и составил 3 час 30 мин.

 Таблица 2. Состав и прочностные свойства шлакощелочного вяжущего на основе доменного шлака и ССС

No	Содержание	Содержание	Предел	прочности при
	портланд-	CCC, %	изгибе/при сжатии, МПа	
	цемента		после	после 28 сут
			TBO	норм.твердения
1	0		Н	е твердеет
2	3		5,7	4,9
		8	35,6	19,7
3	5		5,2	4,4
			36,2	21,3
4	8		7,1	5,0
			40,0	25,7

Как известно, при помоле фосфорного шлака выделяются вредные газы – типа фтористого водорода и фосфина. При помоле фосфорного шлака с электросталеплавильным шлаком количество выделяющихся вредных газов снижается ниже уровня ПДК.

Исходя ИЗ высказанного выше, наших исследованиях В рассматривались вопросы создания шлакощелочных вяжущих использованием фосфорного Павлодарского гранулированного И электросталеплавильного отвального шлаков.

Таблица 3.Сроки схватывания вяжущих композиций на основе доменного шлака, ССС и портландцемента

$N_{\underline{0}}$	Содержание	ΤΗΓ,	Содержание	Сроки схватывания, час-	
	портланд-	%	CCC, %	мин	
	цемента			начало	конец
1	0	22		-	-
2	3	23		3-17	4-20
3	5	25	8	2-22	3-00
4	8	26		2-00	3-30

Математическое планирование экспериментов.

Оптимизацию состава вяжущего на основе фосфорного и электросталеплавильного шлаков и ССС выполняли с помощью математического планирования экспериментов.

В рамках исследований в качестве сырья для получения шлакощелочного вяжущего использовали следующие компоненты:

- Жамбылский гранулированный фосфорный шлак;
- Павлодарский электросталеплавильный шлак;
- В качестве щелочного компонента использовались ССС.

На основании результатов поисковых экспериментов определяли зону приемлемых факторов. За параметр оптимизации были приняты:

- предел прочности при изгибе $R_{\mbox{\tiny ИЗГ}}$, МПа;
- предел прочности при сжатии вяжущих твердевших в нормальных условиях в течении 28 сут $R_{cж}$, МПа.

В качестве входных факторов были использованы следующие:

- содержание сухого вещества щелочного компонента в составе вяжущего - X_1 , %;
- содержание электросталеплавильного шлака в составе вяжущего X_2 , %;
 - содержание портландцемента в составе вяжущего X_3 , %
 - дисперсность алюмосиликатного компонента X_4 , $M^2/\kappa\Gamma$;

На основании принятых условий составили план эксперимента, в соответствии с которым произвели помол намеченных смесей до заданной дисперсности и из полученных порошков готовили образцы на испытание.

Интервалы, уровни варьирования матрица планирования И эксперимента приведены в табл. 4. Результаты реализации намеченного эксперимента приведены в табл. 5. Для проверки коэффициентов и последующего определения адекватности уравнений регрессии дополнительно выполнили 6 опытов, фиксируя факторы в центре плана матрицы (табл. 6). При обработке полученных результатов эксперимента получены следующие уравнения регрессии, адекватно описывающие активность вяжущего в зависимости от входных факторов эксперимента:

$$Y_1 = 3,472 + 0,151X_1 - 0,183X_2 - 0,117X_3 - 0,313X_4 + 0,668X_1^2 - 0,232X_3^2 + 0,318X_4^2;$$
 (5)

$$Y_2 = 29,65 + 1,606X_1 - 1,672X_2 - 2,7X_3 - 1,822X_4 + 1,250X_3^2 + 0,250X_4^2 - 0,900X_1X_2 - -1,029X_2X_3 + 1,35X_2X_4 - 0,875X_3X_4$$
(6)

Анализ математических моделей прочности вяжущих производили графоаналитическим методом. Для этого, по полученным моделям строили графические зависимости прочностей вяжущих (рис.4 и 5). Оптимальные значения находили двумя способами — в случае наличия ярко выраженных экстремумов зависимостей оптимизируемого свойства от факторов и когда исследуемая функция в данном интервале близка к линейной. Оптимальные величины определяли по графическому методу.

Таблица 4. Интервалы и уровни варьирования факторов

Факторь	Уровень варьирования			Интервал		
Наименование	Ед.	Код	-1	0	+1	варьирования
	изм.					
Расход щелочного	%	X_1	4	6	8	2
компонента						
Расход	%	X_2	26	33	40	7
электросталеплавил						
ьного шлака						
Расход	%	X_3	6	10	14	4
портландцемента						
Дисперсность	$M^2/K\Gamma$	X_4	300	325	350	25

Математическая обработка экспериментальных данных, а также анализ изопараметрических диаграмм позволили установить, что на прочность при изгибе существенное влияние оказывает расход щелочи. Увеличение концентрации щелочи в смеси выше 0-уровня приводит к заметному повышению предела прочности при изгибе. Увеличение дисперсности (X_4) вяжущего способствует повышению прочности при изгибе камня вяжущего, но прирост ее незначителен.

Степень влияния факторов на величину критерия оптимальности, в данных сериях эксперимента, находятся в следующем ряду:

- 1. Для прочности при изгибе $X_1 > X_4 > X_2 > X_3$;
- 2. Для прочности при сжатии $X_3 > X_4 > X_1 > X_2$;

Таблица 5. Матрица планирования эксперимента и полученные данные.

№		Факт		Y ₁ ,	Y ₂ ,	
опыта	X_1	X_2	X_3	X_4	МПа	МПа
1	+1	+1	+1	+1	3,5	23,8
2	-1	+1	+1	+1	3,4	22,0
3	+1	-1	+1	+1	4,2	29,6
4	-1	-1	+1	+1	4,1	21,5
5	+1	+1	-1	+1	4,1	33,0
6	-1	+1	-1	+1	3,9	32,1
7	+1	-1	-1	+1	4,3	33,0
8	-1	-1	-1	+1	3,8	28,1
9	+1	+1	+1	-1	4,5	27,5
10	-1	+1	+1	-1	3,9	26,1
11	+1	-1	+1	-1	4,9	36,3
12	-1	-1	+1	-1	4,5	32,2
13	+1	+1	-1	-1	4,7	34,8
14	-1	+1	-1	-1	4,1	30,0
15	+1	-1	-1	-1	5,1	39,4
16	-1	-1	-1	-1	4,6	33,2
17	+1	0	0	0	4,0	27,9
18	-1	0	0	0	4,3	31,3
19	0	+1	0	0	3,5	26,8
20	0	-1	0	0	3,4	32,9
21	0	0	+1	0	3,0	28,0
22	0	0	-1	0	3,5	31,6
23	0	0	0	+1	3,5	31,5
24	0	0	0	-1	4,1	28,1

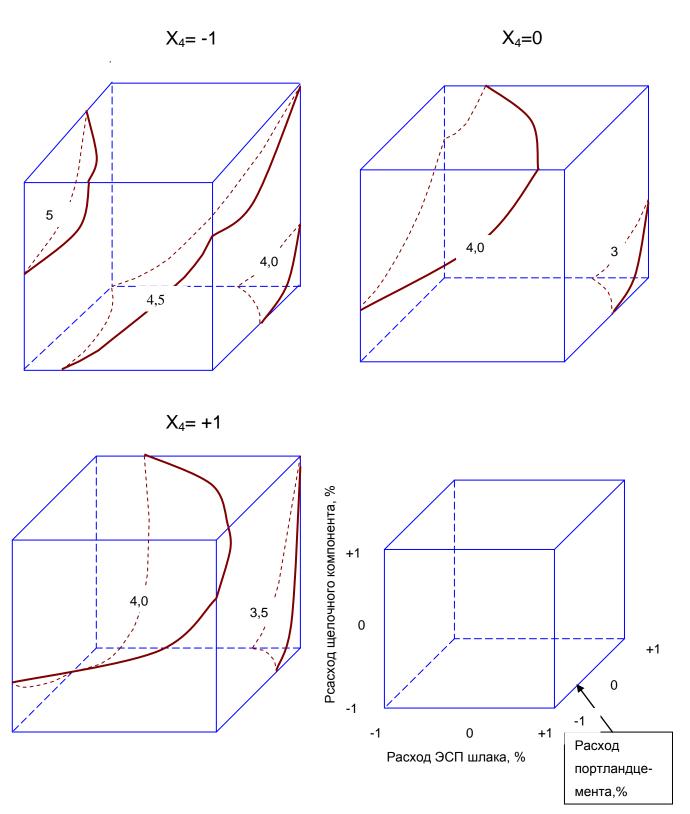


Рис. 4. Изопараметрические диаграммы предела прочности при изгибе в зависимости от удельной поверхности (X_4) вяжущего

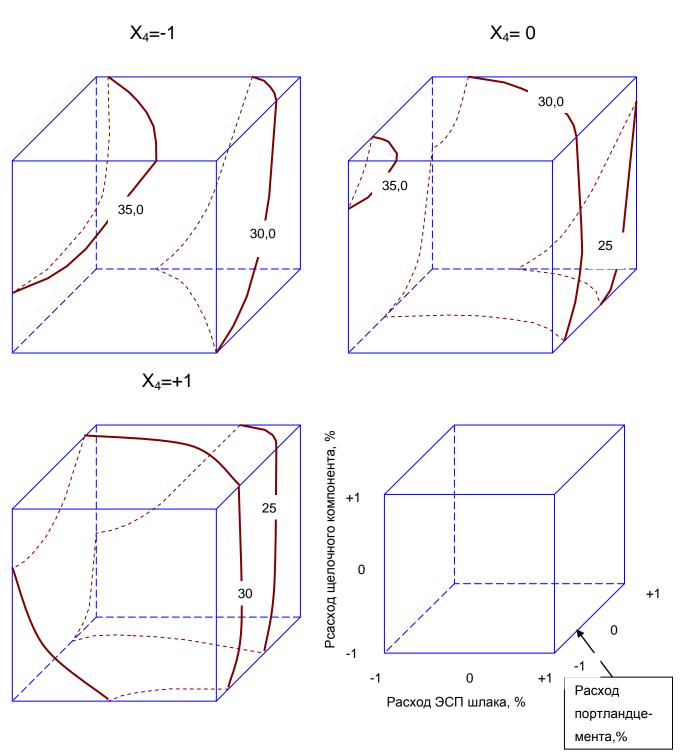


Рис.5. Изопараметрические диаграммы предела прочности при сжатии в зависимости от удельной поверхности (X_4) вяжущего

Таблица 6. Полученные результаты эксперимента в центре плана

Точки		Факт	Y ₁ ,	Y ₂ ,		
плана	X_1	X_2	X_3	X_4	МПа	МПа
1	0	0	0	0	4,1	23,8
2	0	0	0	0	4,3	30,0
3	0	0	0	0	4,3	30,1
4	0	0	0	0	4,0	29,7
5	0	0	0	0	4,0	30,2
6	0	0	0	0	3,9	29,9

Выводы.

Экспериментально полученные данные еще раз доказывают, что свойствами разработанных вяжущих на основе фосфорного и доменного шлаков можно управлять путем введения корректирующих добавок в алюмосиликатную составляющую шлакощелочных вяжущих, а также изменением вида щелочного компонента.

Проведенные исследования подтверждают эффективность применения сульфатсодержащих щелочных компонентов для получения шлакощелочных вяжущих.

В результате проведенных экспериментов получены шлакощелочные вяжущие с активностью от 30 до 110 МПа.

Установлена возможность регулирования свойств разработанных шлакощелочных вяжущих. При этом, путем корректировки состава алюмосиликатного компонента, введением добавок и вида щелочного компонента, можно получить вяжущее требуемой прочности.

Литература

1. Гарькин И.Н., Фолимагина О.В., Фокин Г.А. Нанотехнологии в производстве строительных материалов // Региональная архитектура и строительство. 2009. № 1. С. 111-112.

- 2. Логанина В.И. Наноразмерные модификаторы для известковых сухих строительных смесей // Региональная архитектура и строительство. 2023. № 4 (57). С. 101-114.
- 3. Логанина В.И Силикатные краски для отделки фасадов зданий // Региональная архитектура и строительство. 2023. № 4 (57). С. 88-100
- 4. Жегера К.В. Применение алюмосиликатов в качестве модифицирующей добавки в цементных системах // Региональная архитектура и строительство. 2019. № 1 (38). С. 51-55.
- 5. Жегера К.В., Пышкина И.С. Оценка экономической эффективности применения гидросиликатов кальция в отделочном составе // Региональная архитектура и строительство. 2019. № 2 (39). С. 27-31.
- 6. Королев Е.В. Технико-экономическая эффективность новых технологических решений. Анализ и совершенствование //Строительные материалы. 2017. № 3. С. 85-89.
- 7. Королев Е.В. Нанотехнология в строительном материаловедении // Вестник МГСУ. 2017. Т. 12. № 7 (106). С. 711-717.
- 8. Максимова И.Н., Ерофеев В.Т., Макридин Н.И., Полубарова Ю.В. Комплексная оценка параметров качества структуры и механики разрушения цементного камня // Известия высших учебных заведений. Строительство. 2015. № 3 (675). С. 14-22.
- 9. Шеина С. Г., Виноградова Е.В., Денисенко Ю.С. Пример применения ВІМ технологий при обследовании зданий и сооружений // Инженерный вестник Дона. 2021. № 6. URL: ivdon.ru/ru/magazine/archive/n6y2021/7037
- 10. Гарькин И.Н., Агафонкина Н.В. Технология проведения ремонтных работ на памятнике, являющемся объектом культурного наследия // Вестник евразийской науки. 2020. Т. 12. № 2. С. 4.

- 11. Garkin I.N., Garkina I.A. System approach to technical expertise construction of building and facilities // Contemporary Engineering Sciences. 2015. Vol.8. №5. P.213-217.
- 12. Макридин Н.И., Максимова И.Н. Элементы структурной механики разрушения материалов и параметры трещиностойкости цементных систем//Региональная архитектура и строительство. 2023. № 1 (54). С. 65-70.
- 13. Саденко Д.С., Гарькин И.Н., Маилян Л.Р., Сабитов Л.С. Виброметрические методы диагностики строительных конструкций // Вестник Казанского государственного энергетического университета. 2023. Т. 15. № 3 (59). С. 175-189.
- 14. Соловьев Д.Б., Копотилова В.Г., Катюк Д.П., Пирус А.В., Григорюк В.А., Крылова А.И. Сравнение эффективности использования технологий bim и cad с помощью математической модели // Строительные материалы и изделия. 2021. Т. 4. № 1. С. 18 26.
- 15. Калашников В.И. Что такое порошково-активированный бетон нового поколения // Строительные материалы. 2012. № 10. С. 70-71.
- 16. Гарькин И.Н., Сабитов Л.С., Гайдук А.Р., Чиркина М.А. Сохранение архитектурных концепций малых населенных пунктов: консервация объектов культурного наследия // Инженерный вестник Дона. 2022. №11. URL: ivdon.ru/ru/magazine/archive/n11y2022/8017

References

- 1. Gar'kin I.N., Folimagina O.V., Fokin G.A. Regional'naya arhitektura i stroitel'stvo. 2009. № 1. pp. 111-112.
- 2. Loganina V.I. Regional'naja arhitektura i stroitel'stvo. 2023. № 4 (57). pp. 101-114.
- 3. Loganina V.I Regional'naja arhitektura i stroitel'stvo. 2023. № 4 (57). pp. 88-100

- 4. Zhegera K.V. Regional'naja arhitektura i stroitel'stvo. 2019. № 1 (38). pp. 51-55.
- 5. Zhegera K.V., Pyshkina I.S. Regional'naja arhitektura i stroitel'stvo. 2019. № 2 (39). pp. 27-31.
 - 6. Korolev E.V. Stroitel'nye materialy. 2017. № 3. pp. 85-89.
 - 7. Korolev E.V. Vestnik MGSU. 2017. T. 12. № 7 (106). pp. 711-717.
- 8. Maksimova I.N., Erofeev V.T., Makridin N.I., Polubarova Ju.V. Izvestija vysshih uchebnyh zavedenij. Stroitel'stvo. 2015. № 3 (675). pp. 14-22.
- 9. Sheina S. G., Vinogradova E. V., Denisenko Yu. C. Inzhenernyj vestnik Dona. 2021. № 6. URL: ivdon.ru/ru/magazine/archive/n6y2021/7037.
- 10. Gar'kin I.N., Agafonkina N.V. Vestnik evrazijskoj nauki. 2020. T. 12. № 2. P. 4.
- 11. Garkin I.N., Garkina I.A. Contemporary Engineering Sciences. 2015. Vol.8. №5. pp.213-217.
- 12. Makridin N.I., Maksimova I.N. Regional'naja arhitektura i stroitel'stvo. 2023. № 1 (54). pp. 65-70.
- 13.Sadenko D.S., Gar'kin I.N., Mailjan L.R., Sabitov L.S. Vestnik Kazanskogo gosudarstvennogo jenergeticheskogo universiteta. 2023. T. 15. № 3 (59). pp. 175-189.
- 14.Solov'ev D.B., Kopotilova V.G., Katjuk D.P., Pirus A.V., Grigorjuk V.A., Krylova A.I. Stroitel'nye materialy i izdelija. 2021. T. 4. № 1. pp. 18 26
 - 15. Kalashnikov V.I. Stroitel'nye materialy. 2012. № 10. pp. 70-71.
- 16. Garkin I.N., Sabitov L.S., Gaiduk A.R., Chirkina M. Inzhenernyj vestnik Dona. 2022, № 11. URL: ivdon.ru/ru/magazine/archive/n11y2022/8017

Дата поступления: 11.02.2024

Дата публикации: 23.03.2024