Новые эффективные материалы при проектировании железобетонных и каменных конструкций

В.В. Уваров, Ж.В. Манака

Донской государственный технический университет, Ростов-на-Дону

Аннотация: Статья посвящена анализу эффективности применения преднапряженной арматуры в железобетонных конструкциях и применение сталефибробетона в современном строительстве. Также в данной статье приводятся примеры экономии применения материала.

Ключевые слова: Железобетон, преднапряженная арматура, прочность, высокопрочный железобетон, сталефибробетон, фибра, армирование.

В строительстве очень важно при разработке проектов максимально снизить его материалоемкость, а также сократить трудозатраты, что повлечет за собой экономическую эффективность.

Ранее экспериментальные исследования железобетонных элементов с предварительно сжатой арматурой были проведены Маиляном Д.Р., Байковым В.Н., Складневым Н.Н., Бердичевским Г.И., Гуща Ю.П., Крамаревым В.Г., Ганагом П.Н., Каганом В.Б. и другие. В итоге было установлено, что прочность бетона повышается при предварительном обжатии арматуры.

В работе [1], предлагается способ предварительного сжатия высокопрочной арматуры после бетонирования элемента. Арматурные стержни до укладки бетона покрывают серной обмазкой - смесь серы, кварцевой муки и кварцевого песка в пропорции 1:1:2. Нагретый до 110-1500С серный раствор наносится на арматуру. После набора бетоном прочности, через арматуру пропускается электрический ток, который снова нагревает её. Это приводит к уменьшению сцепления между обмазкой и арматурой. Поэтому, последний может быть подвергнут предварительному сжатию. Когда стержень остынет, то его сцепление с обмазкой частично

восстанавливается, благодаря чему сохраняет в нем предварительное сжатие. Однако бетон испытывает на себе предварительное растяжение.

При таком способе изготовления железобетонных конструкций с предварительно сжатой арматурой, сцепление арматуры с бетоном после нагрева и остывания серного раствора снижается в несколько раз, что существенно ограничивает значения предварительного сжатия арматуры. Особенностью этих методов являлось то, что в них, предварительное сжатие осуществлялось до бетонных работ, что позволяет полностью сохранить сцепление арматуры с бетоном и при отпуске преднапряжения создавать в бетоне предварительные напряжения, которые при загружении элемента внешней нагрузкой суммировались с сжимающими напряжениями, что приводит к уменьшению деформации элемента.

Важно знать, что при изготовлении железобетонных элементов с предварительно сжатой арматурой, имеет место быть обеспечение устойчивости арматуры при её предварительном сжатии.

При экспериментальных исследованиях [2] коротких стержней при центральном арматуры различных классов сжатии, торцы выполнялись в форме полусфер и помещались в углубления, расположенные в центре опорных плит пресса. Испытания показали, что при длине стержней до 10 диаметров арматуры, сжимающие напряжения в арматуре достигали условного предела текучести (до 1000 МПа). При передаче усилия обжатия на арматурный каркас, состоящий например из 4 стержней, для создания в каждом из них напряжения σ_{spc} сжимающее усилие составит

 $P_c - 4A_s * \sigma_{spc}$. Под действием этого усилия возможна либо потеря устойчивости отдельных стержней, удерживаемых хомутами (рис. 1.2,а), либо каркаса в целом (рис. 1.2,б) или одновременно и того, и другого. При потере устойчивости отдельные стержни изгибаются так, что, их длина в

средних панелях может снизиться до 0,5 S — половины шага хомутов, а в крайних панелях — до 0,7 S. Из предоставленной схемы видно, что во всех случаях данная длина всегда будет меньше шага хомутов. Ее значение может быть определено из формулы Эйлера в виде:

$$1 = \sqrt{E_s * J_s * \pi^2 / A_s * \sigma_{spc}}.$$

А для круглого сечения арматуры:

$$1 = 0.785 d\sqrt{E_s/\sigma_{spc}}.$$

Графики, построенные по данной зависимости (рис. 1.2, в) говорят о том, что при любом диаметре продольной арматуры, даже при максимальном преднапряжении $\sigma_{\rm spc}500=$ МПа, для обеспечения устойчивости стержня необходимо принять шаг хомутов таким, чтобы он соответствовал требуемой для сжатых элементов (15d). При $\sigma_{\rm spc}400=$ МПа шаг хомутов может быть принят равным 17d, при $\sigma_{\rm spc}300=$ МПа - 20d. Эти данные подтверждаются многочисленными опытами при предварительном сжатии арматурных каркасов в учебных и производственных лабораториях, выполненных в РГСУ и на Ростовском комбинате стройматериалов №1.

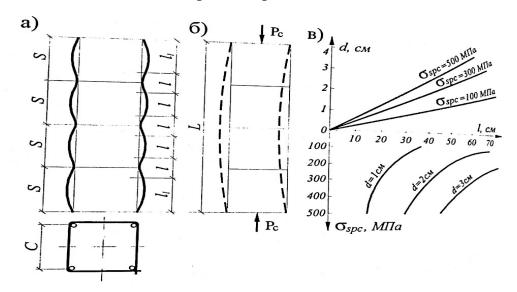


Рис. 1.2. К определению устойчивости арматуры при еè предварительном сжатии:

а, б — схемы потери устойчивости отдельных стержней в составе пространственного каркаса и самого каркаса;

в – графики для определения максимально допустимых расстояний между хомутами в зависимости от диаметра арматуры и предварительных сжимающих напряжений.

Также в работе представлено исследование эффективности использования стальной фибры в многоэтажном жилом доме.

Новые требования по долговечности к строительному материалу как бетон, заставляет искать новые виды армирования. Армирование — это сложный и трудоемкий процесс, который занимает большую часть времени в возведении монолитных конструкций. В качестве армирующего материала в последнее время все более широко применяется дисперсное армирование волокнами. Для изготовления фибры используются различные материалы: металл, базальт, полипропилен, стекло.

сегодняшний день необходимо просчитать экономическую эффективность фибробетонных конструкций, учитывая более высокие физико-механические свойства, долговечность, технологичность, большой межремонтный pecypc И T. ПО сравнению железобетоном. П. Сталефибробетон – композиционный материал из бетонной матрицы, армированной короткими стальными волокнами – фибрами диаметром 0,25-1,2диаметру 50-120, объемным MM, отношением длины К содержанием 0.5-3% [5]. Он и конструкции на его основе отличаются от традиционного бетона более высокими качествам и атмосферной стойкости (морозостойкость не ниже F1000, водонепроницаемость не ниже W20, средний размер пор 0.3 мм, при поверхностной пористости не более 2.5%). Доказано, что при жестких атмосферных воздействиях прирост прочности во времени достигает 20-200% по отношению к железобетону. Сложные по

геометрическим формам конструкции на его основе, такие как оболочка покрытия храма, получаются в 5 раз легче, а экономия стали достигает более чем в 2 раза. Так как данный материалв разы более восприимчив к ударной вязкости и в 4-5 раз превышает огнестойкость традиционного бетона, сталефибробетон может широко применятся в строительстве общественных уникальных зданий и сооружений [6-8].

Сталефибробетон также применяется в конструкциях несущих элементов, таких как несъемная опалубка стен. Установка блоков несъемной опалубки стен полной заводской готовности позволяет выполнять армирование и установку закладных деталей сразу после монтажа блоков. При этом в помещении можно вести другие строительные и монтажные работы. Так, например, опалубочная система наружных и внутренних стен компании AFS Logicwall® позволяет возводить высотные здания до 30 этажей [9]. Такая сборно-монолитная технология строительства на основе сталефибробетонной несъемной опалубки позволяет добиться:

- 1. Сокращения трудозатрат почти на 80%;
- 2. Сокращения около 4% расходов на материалы по сравнению с монолитной технологией;
- 3. Снижения расхода стали до 20%, бетона до 15% по сравнению с технологией сборного железобетона;
- 4. Более разнообразных форм помещений;
- 5. Уменьшения процента стержневого армирования за счет включения сталефибробетонной опалубки в совместную работу с несущим железобетонным элементом [10];
- 6. Обеспечить мониторинг укладки бетона и кинетики его твердения ультразвуковым методом и снизить на 5-10~% затраты на исправление

брака. Все указанное позволит сократить сроки производства работ на 2-3 месяца по сравнению с общепринятым способом.

Экономическая эффективность применения стальной фибры в монолитной плите перекрытия оценивается на примере расчета 16-ти этажного жилого дома с подземной автостоянкой и встроенными офисными помещениями в г. Ростове-на-Дону. Для выполнения расчета использовался программный комплекс ЛИРА- САПР 2017. Расчетная схема здания показана на рис.1.

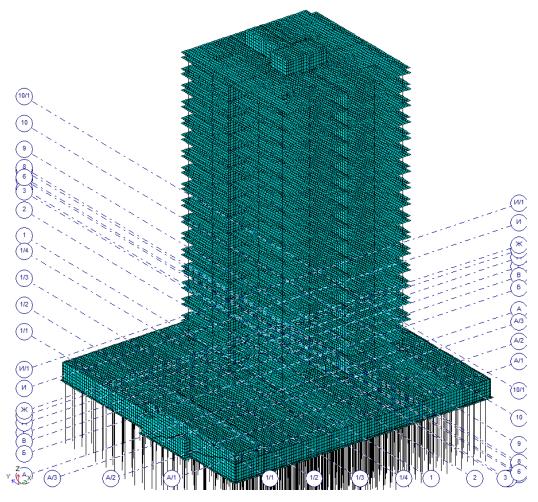


Рис. 1. - Расчетная схема. Общий вид

Расчёт выполнен для рубленной из проволоки стальной анкерной фибры марки HENDIX длиной 50 мм, диаметром 1 мм. Согласно п.8.3.6 СП 52-104-2009 рекомендуется принимать коэффициент фибрового

армирования по объёму, $\mu_{\rm fv}$, от 0,005 до 0,018. Соответствующий расход фибры на единицу объёма бетонной смеси равен $7800*\mu_{\rm fv}$, где $7800~{\rm kг/m}^3-{\rm m}$ плотность фибровой арматуры. Расход фибры составит от $(7800*0,005)=39~{\rm kr/m}^3$ до $(7800*0,018)=140~{\rm kr/m}^3$. В рекомендациях БелНИИС для конструкций жилых домов расход фибры указан от 35 до $120~{\rm kr/m}^3$.

Для вычислительного эксперимента рассмотрено 4 варианта фибрового армирования плиты. Процент фибрового армирования по объёму принимаем: 0,5 % (39 кг/м³); 0,833 % (65 кг/м³); 1,15 % (90 кг/м³); 1,5 % (120 кг/м³). Расчётные характеристики фибробетона приведены в таблице ниже.

Класс бетона-матрицы принят B25. Расчёт характеристик выполнен по методике СП 52-104-2009 (таблица №1).

Таблица №1 Характеристики фибробетона

μ_{fv} , $\kappa_{\text{fr}}/\text{m}^3$)	R _{fbn} , МПа	R _{fb} , МПа	R _{fbtn} , МПа	R _{fbt} , МПа	Е _{fb} , МПа
Бетон-матрица В25	18,5	14,5	1,55	1,05	30 000
0,5 (39)	24,29	19,04	2,15	1,32	30 800
0,833 (65)	26,74	20,96	2,29	1,41	31 333
1,15 (90)	28,52	22,35	2,44	1,50	31 840
1,5 (120)	30,06	23,56	2,59	1,59	32 400

Определено теоретическое армирование колонн здания, а также расход арматуры и бетона. Результаты расчёта приведены ниже в таблице №2.

Таблица №2 Расход материалов на колонны

	Бетон	Арматура А400		
Конструктивное решение	Объём, м ³	Масса, кг	Экономия, %	Фибра, кг
Бетон В25	259,4	28 124		0
Фибробетон при	239,4	16 918	39,8	10117

$\mu_{\text{fv}} = 0.5 \%$			
Фибробетон при	13 721	51,2	16854
μ_{fv} =0,833 %			
Фибробетон при μ_{fv} =1,15	11 998	57,3	23268
%			
Фибробетон при	10 962	61,0	30350
$\mu_{\text{fv}} = 1.5 \%$			

В ходе расчета традиционной плиты перекрытия выявлено, что достигается экономия арматуры в процентном соотношении, а с армированием стальной фиброй Hendix при $\mu_{\rm fv}$ =0,5 % достигается суммарная экономия веса арматуры на 1089 кг.

Вывол:

Экономическая эффективность сталефибробетонных конструкций по сравнению с железобетонными объясняются за счет: большого снижения трудоемкости, снижения использования материалов, повышения долговечности конструкций, увеличения периода ремонта, исключения недостатков, присущих стержневому армированию.

Также выполнен анализ эффективности преднапряжения, в котором арматуры растянутого пояса высокопрочной арматуры и сжатого пояса подвергаются предельному сжатию.

В ходе расчета 16-ти этажного жилого дома с подземной автостоянкой и встроенными офисными помещениями в г. Ростове-на-Дону выявлено, что с добавлением стальной анкерной фибры в конструкциях повышался класс прочности бетона на одну ступень. А при процентном содержании фибры в бетоне равным 0,5% в конструкциях колонн здания достигается суммарная экономия веса арматуры. Отсюда делаем вывод, что на экономическую составляющую конструкций изготовленных из сталефибробетона, немало важную роль процентное содержание фибры, форма и положение их в пространстве.

Литература

- 1. Ганага П.Н., Ганага А.А. Способ изготовления железобетонных элементов с предварительно сжатой стержневой арматурой // А. с. СССР №306240.
- 2. Рискинд Б.Я., Шорникова Г.И. Работа стержневой арматуры на сжатие // Бетон и железобетон. -1974. -№10 С. 3 -4 .
- 3. Байков В.Н., Складнев Н.Н. Оптимальное проектирование предварительно напряженных железобетонных конструкций // Сборник трудов МИСИ "Железобетонные конструкции промышленного и гражданского строительства" М.: Изд-во МИСИ,1981,№185–С. 25–44.
- 4. Бердичевский Г.И., Гуща Ю.П., Крамарь В.Г. Расчет и проектирование железобетонных элементов с частичным предварительным напряжением // Материалы симпозиума ФИП по частичному преднапряжению Бухарест, 1980. Том 1. С. 195 204.
- 5. Талантова К. В. Сталефибробетон с заданными свойствами и строительные конструкции на его основе: дис. д.т.н.: 05.01.23.-Ростов-на-Дону, 2013. 287 с.
- 6. Ааруп Д. CRC Сферы применения высокоэффективного фибробетона // CP1. Международное бетонное производство. -2007.-№ 4.-C.108-115.
- 7. Enfedaque A., Alberti M., Galvez JC, Beltran, M. Constitutive relationship of polyolefin fibre-reinforced concrete: Experimental and numerical approaches to tensile and flexural behavior. Fatigue & Fracture of Engineering Materials & Structures. 2018. Vol. 41 (Iss. 2), pp. 358-373. DOI: 10.1111/ffe.12688.
- 8. Panda B., Paul SC, Tan MJ. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable constructionmaterial. Materials Letters. 2017. Vol. 209, pp. 146-149. DOI: 10.1016/j.matlet.2017.07.123.
- 9. Permanent formwork for concrete walls, load bearing to 30 floors. URL: afsformwork.com.au/products/logicwall (дата обращения: 02.05.2019).

10.Политова В.И. Латыш В.В. Сборно-монолитный метод строительства на основе несъемной сталефибробетонной опалубки. Репозиторий Белорусский национальный технический университет — Минск, Беларусь. -2016. С-108

References

- 1. Ganaga P.N., Ganaga A.A. A. s. SSSR №306240.
- 2. Riskind B.Ja., Shornikova G.I. Beton i zhelezobeton. 1974. №10. pp. 3-4.
- 3. Bajkov V.N., Skladnev N.N. Sbornik trudov MISI "Zhelezobetonnye konstrukcii promyshlennogo i grazhdanskogo stroitel'stva". M.: Izd-vo MISI, 1981, №185. pp. 25-44.
- 4. Berdichevskij G.I., GushhaJu.P., Kramar' V.G. Materialy simpoziuma FIP po chastichnomu prednaprjazheniju. Buharest, 1980. Tom 1. pp. 195-204.
- 5. Talantova K.V. Stalefibrobeton s zadannymi svojstvami i stroitel'nye konstrukcii na ego osnove. [Steel fiber reinforced concrete with desired properties and construction of designs on its basis]:d.t.n.05.01.23.Rostov-on-Don, 2013.287p.
- 6. Aarup D.CRC-Mezhdunarodnoe betonnoe proizvodstvo. 2007. №4. pp.108-115.
- 7. Enfedaque A., Alberti M., Galvez JC, Beltran, M. Constitutive relationship of polyolefin fibre-reinforced concrete: Experimental and numerical approaches to tensile and flexural behavior. Fatigue & Fracture of Engineering Materials & Structures. 2018. Vol. 41 (Iss. 2), pp. 358-373. DOI: 10.1111/ffe.12688.
- 8. Panda B., Paul SC, Tan MJ. Materials Letters. 2017. Vol. 209, pp. 146-149. DOI: 10.1016/j.matlet.2017.07.123.
- 9. Permanent formwork for concrete walls, load bearing to 30 floors. URL: afsformwork.com.au/products/logicwall (data obrashhenija: 02.05.2019).
- 10. Politova V.I. Latysh V.V. Sborno-monolitnyj metod stroitel'stva na osnove nesemnoj stalefibrobetonnoj opalubki. [Precast-monolithic construction

method based on fixed steel-fiber concrete formwork]. Repozitorij Belorusskij nacional'nyj tehnicheskij universitet. Minsk, Belarus'.