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Abstract: This paper examines the application of Bidirectional Long Short-Term Memory (Bi-
LSTM) networks in neural source code generation. The research analyses how Bi-LSTMs 
process sequential data bidirectionally, capturing contextual information from both past and 
future tokens to generate syntactically correct and semantically coherent code. A comprehensive 
analysis of model architectures is presented, including embedding mechanisms, network 
configurations, and output layers. The study details data preparation processes, focusing on 
tokenization techniques that balance vocabulary size with domain-specific terminology handling. 
Training methodologies, optimization algorithms, and evaluation metrics are discussed with 
comparative results across multiple programming languages. Despite promising outcomes, 
challenges remain in functional correctness and complex code structure generation. Future 
research directions include attention mechanisms, innovative architectures, and advanced 
training procedures.  
Keywords: code generation, deep learning, recurrent neural networks, transformers, 
tokenisation. 

Introduction 

Neural source code generation represents a paradigm shift in software 

development, moving away from traditional rule-based programming towards data-

driven approaches that leverage the power of deep learning models to 

automatically generate source code from various inputs, such as natural language 

descriptions or abstract specifications [1, 2]. This emerging field holds immense 

potential to revolutionise software engineering practices by automating repetitive 

coding tasks, accelerating development cycles, and empowering individuals with 

limited programming expertise to create software applications [2]. Among the 

diverse range of deep learning architectures employed in neural source code 

generation, Bidirectional Long Short-Term Memory (Bi-LSTM) networks have 

emerged as a prominent and effective technique [3, 4]. 

Bidirectional long short-term memory networks are among the most popular 

and powerful deep learning methods in neural source code generation. Bi-LSTMs 
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leverage their ability to handle bidirectional sequential data streams to generate 

source code; this allows them to easily process the intricate dependencies and 

contextual nuances found in programming languages [5]. 

Bi-LSTMs improve code structure comprehension by incorporating context 

from both past and future tokens, as opposed to unidirectional LSTMs, which 

incorporate only past context. This is especially crucial for ensuring the syntactic 

correctness and semantic coherence of the generated code[5, 6]. Bi-LSTM-based 

models are gaining popularity as demand for speedy and automated code 

generation tools rises. They provide an appealing path for software development 

process advancement and unlock new potential for both novice and professional 

developers. Furthermore, deep learning innovations have given rise to code-

generation models capable of producing highly accurate source code from code-

based and natural language requests. 

This paper presents an overview of bidirectional LSTM-based techniques for 

automated source code generation, including their structures, training procedures, 

and applications. 

Background 

Improved performance of large language models has significantly helped 

natural language processing by bridging the gap between programming and natural 

languages. AI-based code generation produces source code from natural language 

descriptions, improving efficiency. Although early solutions relied on heuristic 

rules and expert systems, recent breakthroughs in deep learning, such as recurrent 

neural networks and transformers, have proven particularly beneficial in 

addressing code production challenges [6]. 

Bi-LSTM Networks 



Инженерный вестник Дона, №6 (2025) 
ivdon.ru/ru/magazine/archive/n6y2025/10147 
 

 

 

© Электронный научный журнал «Инженерный вестник Дона», 2007–2025 

Long Short-Term Memory (LSTM) networks are a variant of recurrent 

neural network developed primarily to address the issue of vanishing gradients in 

traditional RNNs during the handling of long sequences. They consist of memory 

cells with input, forget, and output gates to regulate the flow of information. This 

allows for the establishment of long-term interdependence through the 

management of information intake, omitting of unnecessary information, and cell 

state contribution to outputs [7]. 

 

Fig.1. - Bidirectional LSTM Architecture 

Furthermore, the recurrence of LSTMs retains previous inputs as hidden 

states, which is important for comprehending sequential context in tasks such as 

source code generation and natural language analysis. Bidirectional LSTMs 

improve the performance of standard LSTMs by capturing both forward and 

backward input sequences. This is highly useful for applications that need to 

provide context based on previous and future inputs (see Fig.1. for a visual 

illustration). 

Neural Source Code Generation 
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The capability of generating code from diverse inputs, such as formal 

requirements, natural language descriptions, or existing code snippets, makes 

neural source code generation a significant software development innovation. 

Previous code generation techniques were based on hand-coded rules and 

templates that were rigid and difficult to generalize across diverse programming 

areas and application domains. Yet, the development of deep learning techniques 

has changed this industry and resulted in models that are able to generate code with 

greater accuracy and complexity [7 - 9].  

Neural source code generation creates new and contextually relevant 

fragments of code by leveraging neural networks' ability to understand the 

complex links between input data and output code. These models can learn the 

syntax, semantics, and stylistic guidelines of several programming languages 

because they are trained on large code and documentation datasets [9, 10]. 

Translating natural language specifications into executable code has the 

potential to democratise software development since it will enable users without 

programming experience or knowledge to execute computational ideas and share 

in the digital world, making the technological ecosystem more diverse and 

inclusive [3, 22]. Neural code generation can also dramatically enhance developer 

productivity by automating routine coding tasks and facilitating more creative and 

strategic work, during the software development lifecycle [10]. 

Tokenization and Data Preparation 

Adequate data preparation is critical when building Bi-LSTM-based models 

because it has a substantial impact on model development and training capabilities.  

Tokenisation is the initial stage of this approach, in which the source code is 

broken down into discrete tokens. Tokens are the fundamental building elements of 

code and can include operators, punctuation, keywords, and identifiers. Because it 

accurately tokenises the code, the model can grasp and evaluate its underlying 
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structure and semantics, allowing it to perform better on tasks like code generation 

and analysis [10 - 12]. 

Furthermore, techniques such as Subword tokenisation are employed to 

achieve a balance between the model's ability to handle uncommon or unknown 

words in source code—words with unusual naming patterns or that are domain-

specific—and vocabulary size. This improves the realism and consistency of 

generated code by significantly increasing the model's ability to comprehend the 

intricate technical aspects prevalent in various programming paradigms and coding 

styles [9, 10]. 

After tokenising the source code, it is necessary to create a vocabulary in 

which each token is assigned a fixed-sized embedded vector. Keywords and 

semantically relevant elements should be expressed using similar vectors [13-16]; 

some systems train a token embedding first, followed by the neural network. 

Bi-LSTM Model Architecture 

The Bi-LSTM structure utilized for code generation typically comprises 

three layers: an embedding layer, Bi-LSTM layers, and a dense output layer. The 

embedding layer converts each token into a high-dimensional vector representation 

containing semantic and syntactic information regarding the token; the embeddings 

are passed into the Bi-LSTM layers. The layers process the input sequence in both 

forward and backwards directions, gathering contextual information from tokens 

that precede and follow each token and computing a hidden state representation for 

each token in the sequence [17]. 

The Bi-LSTM structure utilized for code generation typically comprises the 

hidden state representations that are  sent into a dense output layer, which produces 

a probability distribution over the multiple token vocabularies. Hyperparameters 
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with a significant impact on model performance include the number of Bi-LSTM 

layers, learning rate, batch size, and hidden state dimension. Furthermore, tuning 

them is essential for improving model performance. In addition, grid search and 

random search are common methods for determining the optimal hyperparameter 

configurations [17, 18]. 

Bi-LSTM models are extensively trained on large source code repositories 

utilizing   optimisation techniques to reduce disparities between the generated code 

and the desired output. Throughout training, model parameters (weight and bias) 

are constantly changed to improve context sensitivity and code generation 

accuracy. Parameters are updated based on observations of the loss function 

gradient for prediction-target differences. Adam, RMSprop optimisation, and 

stochastic gradient descent are used to reduce loss. The Adam optimiser uses 

gradient information to continually alter learning rates for each parameter [19]. 

To support thorough evaluation of a variety of programming languages, the 

models are extensively tested on training data sets representing a variety of coding 

styles, domains, and complexities, as well as a variety of programming languages 

(C, C++, Java, and Python). Various metrics are used to evaluate performance: for 

example, BLEU which uses n-gram to assess the similarity between reference and 

output code [20 - 24]. 

Conclusion 

This study examined the potential of Bi-LSTM networks to generate source 

code, as well as the benefits and drawbacks of this technique. Despite the 

encouraging results of these approaches, future research should  focus on 

improving functional correctness and handling complicated code structures. 

Potential research paths include incorporating attention mechanisms, studying 
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innovative network designs, and developing increasingly sophisticated training 

procedures. 
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