Влияние режимов механоактивации на гранулометрический состав и микроструктуру промышленного материала ЦТС-19

Б.С. Половинкин, А.В. Нагаенко, Л.А. Шилкина, И.А. Вербенко, И.Н. Андрюшина, А.А. Павелко

Южный федеральный университет, Ростов-на-Дону

Аннотация: Установлено влияние режимов механоактивации на температуру спекания, гранулометрический состав и микроструктуру керамики ЦТС-19. Установлено, что метод механоактивации позволяет увеличить однородность зёрен керамики.

Ключевые слова: сегнетоэлектрики, гранулометрический состав, зеренное строение, механоактивация, ЦТС.

Введение

ЦТС-19 является промышленно важным сегнетоэлектрическим материалом, отличающимся повышенной чувствительностью к механическому напряжению [1]. Он находит широкое применение в гидроакустике и эхолокации [2, 3].

Однако этот материал является объектом с трудновоспроизводимыми электрофизическими параметрами [4], которые зависят от технологических условий: природы реагентов, температуры синтеза и спекания, наличия примесных фаз, дефектности структуры, вариации размеров исходных частиц [5-8].

Одним из наиболее эффективных и простых способов, позволяющих снизить $T_{\rm cn}$, а также резко сократить интервал возможных вариаций размеров исходных частиц и, как следствие, сформировать монозёренную структуру и добиться лучшей воспроизводимости электрофизических свойств, является высокоэнергетический помол – механоактивация (МА) [9].

Настоящая работа посвящена установлению корреляционных связей между режимами механоактивации, гранулометрическим составом синтезированных продуктов и микроструктурой промышленного керамического материала — ЦТС-19.

Объекты. Методы получения и исследования образцов

Все образцы получены твердофазным синтезом из оксидов PbO и ZrO₂ марки «ч», TiO_2 и Nb_2O_5 марки «осч» и Nd_2O_3 марки «х.ч»; $SrCO_3$ марки «ч.д.а». Механоактивацию (МА) синтезированных продуктов осуществляли в шаровой планетарной мельнице $A\Gamma O$ -2, время активации составило 10, 15 и 20 мин. На основе серии пробных обжигов выбраны оптимальные режимы синтеза, составившие T_1 =950°С, T_2 =970°С, τ_1 = τ_2 =5ч; температуры спекания $(T_{\rm cn})$ варьировались в пределах: $T_{\rm cn}$ =1220–1390°C (без MA) и 1260–1300°C (с МА). Рентгенографические исследования при комнатной температуре порошковой дифракции c проводили методом использованием ДРОН-3 дифрактометра (отфильтрованное Сока-излучение, схема фокусировки по Брэггу – Брентано). Гранулометрический состав порошков оценивали с помощью лазерного анализатора частиц Analysette 22 Compact. Микроструктуру спечённых керамик оценивали с помощью сканирующего электронного микроскопа JSM-6390L.

Экспериментальные результаты и обсуждение

Результаты гранулометрического анализа представлены на рис. 1.

Гранулометрический анализ материала показал, что в неактивированных составах размер частиц изменяется в широких пределах, что обусловливает невоспроизводимость свойств материала, и, в том числе, определяет возможность колебания относительной диэлектрической проницаемости от значений 600 до 1600 [10]. При активировании в течение 20 минут в материале наблюдается сужение области среднего размера частиц, то есть фактически формируется монозёренная структура.

Установлено, что при использовании МА-приёмов удаётся уменьшить степень неоднородности зёренного ландшафта и почти вдвое - средний размер кристаллитов керамики, что, на фоне совершенствования их границ, способствовало улучшению эксплуатационных параметров материала.

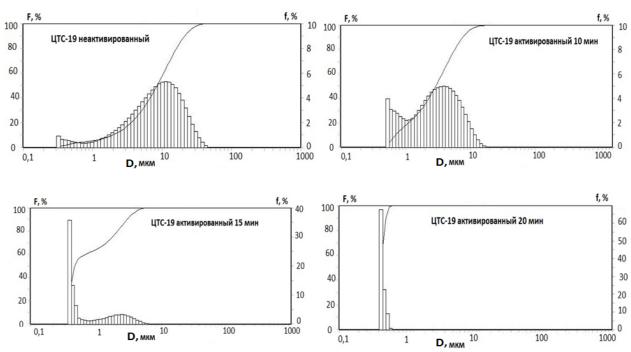


Рис. 1. – Интегральные функции распределения F(D) и плотности распределения f(D) частиц ЦТС-19 по размеру в зависимости от времени активации

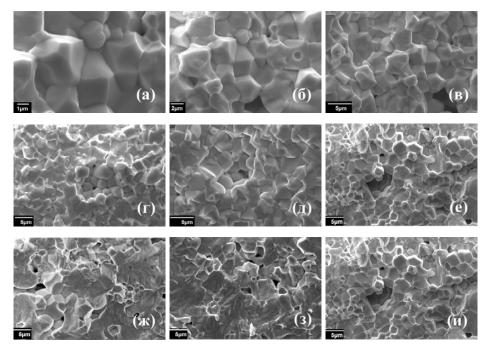


Рис 2. -a- θ – без MA; ε -e- различные режимы MA; \mathcal{H} -u MA-спеченные образцы при разных температурах спекания

Наблюдаемое MAсвязано моноразмерностью частиц как cсинтезированных порошков, так и с насыщенностью их дефектами [11], благоприятствующими диффузионных протеканию процессов рекристаллизационном массопереносу при спекании исходных дисперснокристаллических сред.

Заключение

Полученные результаты необходимо использовать при разработке сегнетоэлектрических материалов на основе системы ЦТС.

Работа оборудовании ЦКП «Электромагнитные, выполнена на электромеханические и тепловые свойства твердых тел» и «Высокие технологии» Южного федерального университета финансовой при поддержке Минобрнауки РФ: темы $N_{\underline{0}}$ 1927, 213.01-2014/012-BΓ 3.1246.2014/К (базовая и проектная части гос. задания), Грант Президента РФ № MK-3232-2015-2.

Литература

- 1. Яффе Б., Кук У., Яффе Г. Пьезоэлектрическая керамика. Москва: Мир, 1974. 288 с.
- 2. Нагаенко А.В., Панич А.Е., Свирская С.Н., Малыхин А.Ю., Скрылёв А.В. Управление свойствами пьезокерамического материала системы ЦТС, используемого в гидроакустических излучателях // Инженерный вестник Дона, 2016, №2 URL: ivdon.ru/ru/magazine/archive/n2y2016/3585.
- 3. Капышев А.Г., Иванова В.В., Веневцев Ю.Н. Электронная техника // Материалы. 1970. в.1. с. 154.
- 4. Нагаенко А.В., Нестеров А.А., Свирская С.Н., Панич А.Е. Изменение ЭФП материалов системы ЦТС методом комбинирования // Инженерный вестник Дона, 2013, №2 URL: ivdon.ru/ru/magazine/archive/n2y2013/1732.
 - 5. Исупов В.А., Белоус Л.П. Кристаллография. 1971. 164 с.

- 6. Дудкина С.И., Шилкина Л.А., Андрюшина А.Н., Резниченко Л.А., Разумовская О.Н. Влияние технологических режимов на свойства твердых растворов системы (1-*x*) PbZrO₃ − *x* PbTiO₃ // Инженерный вестник Дона, 2015, №2 URL: ivdon.ru/ru/magazine/archive/n2p2y2015/2971.
- 7. Andryushina I.N., Reznichenko L.A., Shmytko I.M., Shilkina L.A., Andryushin K.P., Yurasov Y.I., Dudkina S.I. The PZT system (PbTixZr1-xO3, 0≤x≤1.0): Dielectric response of solid solutions in broad temperature (10≤T≤1000 K) and frequency (10-2≤f≤107 Hz) ranges (Part 4) // Ceramics International. 2013. V. 39. pp. 3979-3986.
- 8. Andryushina I.N., Reznichenko L.A., Shilkina L.A., Andryushin K.P., Yurasov Y.I., Dudkina S.I. The PZT system (PbTixZr1-xO3, 0≤x≤1.0): The dependences of electrophysical properties of solid solutions on the electric field strength and component concentration (Part 5) // Ceramics International. 2013. V. 39. pp. 7635-7640.
- 9. Миллер А.И., Вербенко И.А., Шилкина Л.А., Павелко А.А., Андрюшин К.П., Резниченко Л.А., Гусев А.А. Механохимический синтез BiFeO3 // Конструкции из композиционных материалов. 2012. № 2. С. 47-50.
- 10. Данцигер А.Я., Разумовская О.Н., Резниченко Л.А. и др. Высокоэффективные пьезокерамические материалы. Справочник. Ростов-на-Дону. 1994. 14 с.
- 11. Sawaguchi E. Ferroelectricity versus Antiferroelectricity in the Solid Solutions of PbZrO₃ and PbTiO₃ // J. Phys. Soc. Japan. 1953. V. 8. pp. 615-629.

References

- 1. Jaffe B., Cook W. Jr., Jaffe H. Piezoelectric Ceramics. New York: Academic Press, 1971. 317 p.
- 2. Nagaenko A.V., Panich A.E., Svirskaya S.N., Malykhin A.Yu., Skrylev A.V. Inženernyj vestnik Dona (Rus), 2016, №2 URL: http://ivdon.ru/ru/magazine/archive/n2y2016/3585.

- 3. Kapyshev A.G., Ivanova V.V., Venevtsev Yu.N. Elektronnaya tekhnika [Electronic equipment]. Materialy. 1970. N 1. p. 154.
- 4. Nagaenko A.V., Nesterov A.A., Svirskaya S.N., Panich A.E. Inženernyj vestnik Dona (Rus), 2013, №2 URL: ivdon.ru/ru/magazine/archive/n2y2013/1732.
 - 5. Isupov V.A., Belous L.P. Kristallografiya [Crystallography]. 1971. 164 p.
- 6. Dudkina S.I., Shilkina L.A., Andryushina A.N., Reznichenko L.A., Razumovskaya O.N. Inženernyj vestnik Dona (Rus), 2015, №2 URL: ivdon.ru/ru/magazine/archive/n2p2y2015/2971.
- 7. Andryushina I.N., Reznichenko L.A., Shmytko I.M., Shilkina L.A., Andryushin K.P., Yurasov Y.I., Dudkina S.I. Ceramics International. 2013. V. 39. pp. 3979-3986.
- 8. Andryushina I.N., Reznichenko L.A., Shilkina L.A., Andryushin K.P., Yurasov Y.I., Dudkina S.I. Ceramics International. 2013. V. 39. pp. 7635-7640.
- 9. Miller A.I., Verbenko I.A., Shilkina L.A., Pavelko A.A., Andryushin K.P., Reznichenko L.A., Gusev A.A. Konstruktsii iz kompozitsionnykh materialov. 2012. № 2. pp. 47-50.
- 10. Dantsiger A.Ya., Razumovskaya O.N., Reznichenko L.A. et.al. Vysokoeffektivnye p'ezokeramicheskie materialy. Spravochnik [High-performance piezoceramic materials. Directory]. Rostov-on-Don. 1994. 14 p.
 - 11. Sawaguchi E. J. Phys. Soc. Japan. 1953. V. 8. pp. 615-629.