Соотношение параметров прочности песчаных грунтов при испытаниях в компрессионном одометре с измерением боковых напряжений и в приборе одноплоскостного среза

Е.И. Петрукович, О.В. Хрянина

Пензенский государственный университет архитектуры и строительства

Аннотация: В статье рассмотрены методы и результаты определения показателей деформационных и прочностных свойств грунтов с использованием различных технологий лабораторных испытаний. Приведены результаты испытаний песка мелкого, залегающего в основании проектируемого спортивно-оздоровительного комплекса на одной из площадок строительства в г.Пензе. Показано влияние используемых методов испытаний на получаемые значения характеристик прочности и деформируемости. Выявлены корреляционные показатели и даны соответствующие выводы и предложения. Ключевые слова: песок, лабораторные методы испытаний; одноплоскостной срез, одометрические испытания, прочностные характеристики, деформативные характеристики.

Известно, что достоверность проектных решений оснований и фундаментов зависит не только от методов расчета, но и от качества проведения изысканий на площадке строительства [1]. При этом, качество инженерно-геологических изысканий зависит от множества факторов - технологий бурения, отбора монолитов, подготовки образцов, правильного выбора методов лабораторных и полевых испытаний грунтов, а также от опытности исследователей и требований нормативных документов [2, 3].

С целью получения параметров грунтов основания необходимых для проектирования фундаментов последующего расчета И спортивнооздоровительного комплекса по двум группам предельных состояний проведены исследования на приборах конструкции НПП «Геотек» [4] с измерительно-вычислительного АСИС использованием комплекса определения автоматизированной системы ДЛЯ прочностных И деформационных свойств грунта [5, 6].

Задача исследований - удостовериться в методологической верности результатов, полученных из испытаний в экспериментальной камере

компрессионного одометра с возможностью измерений боковых напряжений (рис.1). С технической точки зрения данный прибор представляет собой камеру компрессионного одометра, модифицированную вмонтированным внутрь датчиком напряжений в виде тензометрического кольца [7-9]. Ранее в работах [10, 11] была показана возможность определения ряда механических свойств грунтов в компрессионном приборе с измерением боковых напряжений. Актуальность данной разработки заключается в возможности заменить данным прибором проведение испытаний на определение прочностных характеристик грунта в срезных приборах (табл. 1).

Однако, научного обоснования ДЛЯ должного справедливости предлагаемого метода, необходимо убедиться в тождестве или строгой корреляционной зависимости результатов испытаний на предлагаемом приборе и результатов классических методик государственных стандартов, в частности – одноплоскостного среза. В качестве эталонных применяются результаты испытаний того же грунта, но проведенные в установке среза ГОСТ 12248-2010 одноплоскостного "Грунты. Методы ПО лабораторного определения характеристик прочности и деформируемости" (рис.1).

Рис. 1. – Приборы конструкции НПП «Геотек» [4]:

- (а) компрессионный с измерением боковых напряжений;
 - (б) одноплоскостного среза со статическим нагружением

Таблица 1 Возможность определения механических характеристик грунта в приборах

Грунт	Прибор	Одноплос костной срез		Компрессионный одометр с измерением боковых напряжений			
	Наименование	φ	С	φ	С	E_{κ}	E_{ord}
Песок мелкий рыхлый в	Механические прочностные хар-ки	+	+	+	+		
воздушно-сухом состоянии	Механические деформац. хар-ки					+	+
Песок мелкий плотный в	Механические прочностные хар-ки	+	+	+	+		
воздушно-сухом состоянии	Механические деформац. хар-ки					+	+

В связи с этим необходимо проведение серий опытов с разными образцами грунта. В данной статье в качестве поверяемых характеристик используются прочностные характеристики песка мелкого средней крупности – угол внутреннего трения и удельное сцепление.

Лабораторные испытания проводились на образцах-близнецах песчаного грунта в воздушно-сухом состоянии при коэффициенте пористости e=0,58 и e=1,03 (табл.2). Для получения статистически верных результатов необходимо проведение установленного в ГОСТ и СП необходимого количества опытов. Данные требования отражены в таблице 3.

Таблица 2 Физико-механические характеристики грунта

Прибор	I	Весы, лине	ейки				Набој	сит с		
Наименование	$\gamma_s, \frac{rp}{rr^3}$	γ , $\frac{rp}{r}$	ω,	e	A5,%	A2,%	A1,%	A0,5	A0,25	A0,1
	CMS	γ , <u>cm³</u>	%							
Песок мелкий рыхлый в воздушно-сухом состоянии										
Физические хар-ки	2,65	1,3	0	1,03						
Гранулометрический					1,6	4,6	8,2	6,9	22,4	56,3
состав										
Песок мелкий плотный в воздушно-сухом состоянии										
Физические хар-ки	2,65	1,7	0	0,56						
Гранулометрический					1,6	4,6	8,2	6,9	22,4	56,3
состав										

Таблица 3

Виды и количество испытаний

№	Прибор	Описание грунта	Вид	Стандарт	Кол-во
		нагружения/схема			испыта
			испытания		ний
1	Одометр с	Песок мелкий	Ступенчатое	Стандарт	6
	измерением	рыхлый (<i>e</i> =1,03) в	нагружение при 50-	предприятия,	
	боковых	воздушно-сухом	100-200-400 кПа	ГОСТ-12248	
	напряжений	состоянии			
2	Одометр с	Песок мелкий	Ступенчатое	Стандарт	6
	измерением	плотный (e =0,56)	нагружение при 50-	предприятия,	
	боковых	в воздушно-сухом	100-200-400 кПа	ГОСТ-12248	
	напряжений	состоянии			
3	Одометр с	Песок мелкий	Нагружение	Стандарт	3
	измерением	рыхлый (e=1,03) в	непрерывное при 100	предприятия,	
	боковых	воздушно-сухом	кПа	ГОСТ-12248	
	напряжений	состоянии			
4	Одометр с	Песок мелкий	Нагружение	Стандарт	3
	измерением	плотный (e =0,56)	непрерывное при 100	предприятия,	
	боковых	в воздушно-сухом	кПа	ГОСТ-12248	
	напряжений	состоянии			
5	Одометр с	Песок мелкий	Нагружение	Стандарт	3
	измерением	рыхлый (<i>e</i> =1,03) в	непрерывное при 800	предприятия,	
	боковых	воздушно-сухом	кПа	ГОСТ-12248	
	напряжений	состоянии			
6	Одометр с	Песок мелкий	Нагружение	Стандарт	3
	измерением	плотный (e =0,56)	непрерывное при 800	предприятия,	
	боковых	в воздушно-сухом	кПа	ГОСТ-12248	
	напряжений	состоянии			
7	Прибор	Песок мелкий	Вертикальное	ГОСТ-12248	6
	одноплоскостно	рыхлый (<i>e</i> =1,03) в	нагружение при		
	го среза	воздушно-сухом	100,200,300,400 кПа,		
		состоянии	срез с постоянной		
			скоростью		
8	Прибор	Песок мелкий	Вертикальное	ГОСТ-12248	6
	одноплоскостно	плотный (e =0,56)	нагружение при		
	го среза	в воздушно-сухом	100,200,300,400 кПа,		
		состоянии	срез с постоянной		
			скоростью		

В качестве образцов-близнецов грунта, моделирующих напряженное основания строящимся спортивно-оздоровительным состояние под комплексом, использовался просеянный песок фракции 0,1 - 0,2 мм без примесей, полученный посторонних В сухом состоянии, методом до постоянной массы в духовом шкафу. Формирование высушивания

образцов-близнецов грунта происходило весовым методом непосредственно в рабочей камере приборов. Данная методика подготовки описана в [12].

Методика испытаний в компрессионном одометре с возможностью измерения боковых напряжений

Рассмотрим методику испытаний на примере образцов-близнецов песка, моделирующих состояние грунта в основании спортивно-оздоровительного комплекса с коэффициентом пористости $e_0 = 0,56$, что соответствует плотному сложению для песков мелких согласно ГОСТ 25100-2011 "Грунты. Классификация (с Поправками)". Начальный коэффициент пористости e_0 определялся по известной формуле:

$$e_0 = \frac{(1+w)\cdot\gamma_s}{\gamma} - 1 = \frac{(1+0)\cdot2.65}{1.7} - 1 = 0.56$$

где w — весовая влажность образца; γ_s — удельный вес частиц образца; удельный вес грунта $\gamma = m/V = 255/148, 5 = 1,7$ г/см³.

В результате обработки данных получен журнал испытаний в электронном формате в виде сводной таблицы и построены следующие зависимости: между вертикальным напряжением и вертикальной деформацией (рис.2) и между вертикальным напряжением и боковыми напряжениями (рис.3). Согласно ГОСТ 12248-2010 "Грунты. Методы лабораторного определения характеристик прочности и деформируемости", рис.3 описывается уравнением Кулона:

$$\tau = \sigma t g \varphi + c$$

Анализируя график, получаем следующие значения удельного сцепления c=0,225 кПа (допустимое значение для песков, принимаем c=0 кПа); $tg\phi=0,509$; угол внутреннего трения $\phi=27^0$.

Зная начальный коэффициент пористости e_0 и коэффициенты, соответствующие каждой ступени давления грунта e_i , можно приступить к построению компрессионной кривой — графика зависимости изменения

коэффициента пористости от вертикальных напряжений (рис.4, 5, 6):

$$e_i = e_0 - \dfrac{(1+e_0)S_i}{h}$$
 — коэф. пористости при ступени нагружения i

где h — первоначальная высота образца, мм; S_i — осадка образца, мм.

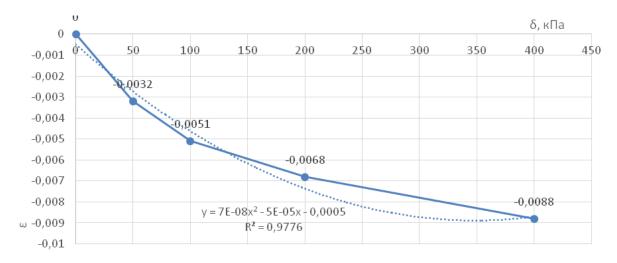


Рис.2. – Зависимость между вертикальным напряжением σ и вертикальной деформацией ε

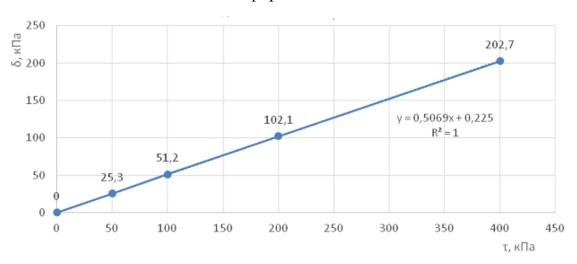


Рис.3. — Зависимость между вертикальным напряжением σ и боковыми напряжениями τ

Построив данные графики, можно определить коэффициент сжимаемости грунта m_0 , МПа $^{-1}$; компрессионный модуль деформации E_{κ} , МПа и одометрический модуль деформации E_{ord} , МПа (табл. 4):

$$m_0 = \frac{e_i - e_{i+1}}{\delta_{i+1} - \delta_i} \qquad \qquad E_k = \frac{1 + e_0}{m_0} \beta \qquad \qquad E_{ord} = \frac{\Delta \sigma}{\Delta \varepsilon}$$

где β — коэффициент, учитывающий отсутствие поперечного расширения грунта в приборе для песков β =0,8.

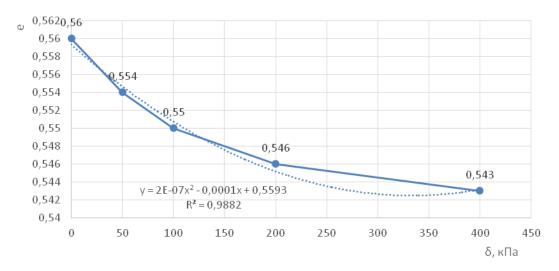


Рис. 4. – Компрессионная кривая

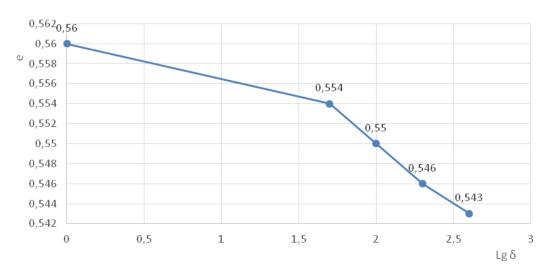
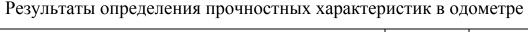


Рис. 5. – Компрессионная кривая в полулогарифмическом виде

Между компрессионным и одометрическим модулями деформации существует следующая связь:


$$E_k = \beta \cdot E_{ord}$$

Таким образом, осредненный коэффициент $\beta = 0.66$, полученный опытным путем, отличается от нормированного значения $\beta = 0.8$ для песков.

Таблица 4 Результаты определения деформативных характеристик в одометре

Интервал давлений, кПа	$m_{0,}$ M Π a ⁻¹	E_{κ} , ΜΠα	$E_{ord,}$ МПа	β
0-50	0,12	10,4	15,6	0,67
50-100	0,08	15,6	26,3	0,59
100-200	0,04	31,2	58,8	0,53
200-400	0,015	83,2	100	0,832

Таблица 5

Схема испытания: ступени 50-100-200-400 кПа.	φ , град	c , к Π а
Серия опытов 1 (рыхлый песок)	18,1	- 2,74
Серия опытов 2 (плотный песок)	27	0,225

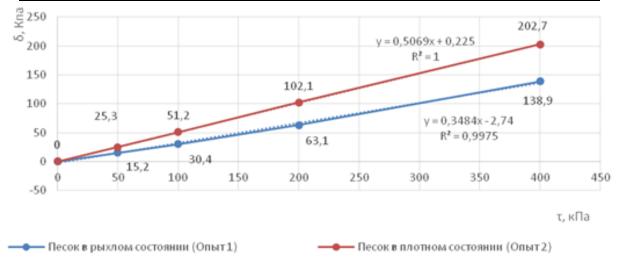


Рис.6. – Сводный график зависимостей по двум сериям опытов между вертикальными и боковыми напряжениями

Методика испытания в приборе одноплоскостного среза

Испытания в приборе одноплоскостного среза проводятся с целью установить истинные прочностные характеристики испытуемого грунта для сверки данных, полученных после обработки испытаний в экспериментальном компрессионном одометре.

Согласно ГОСТ 12248-2010 для получения прямой зависимости боковых напряжений от нормальных напряжений (без учета статистической обработки) необходимо минимум три опыта с разными значениями прикладываемого вертикального давления. Для каждого состояния песка (рыхлый e=1,03, плотный e=0,56) было проведено четыре испытания с соответственными значениями вертикальной нагрузки: 100-200-300-400 кПа.

По результатам испытаний сформирована таблица 6, состоящая из значений σ , кПа и τ , кПа на момент максимальной прочности образца и построены график зависимости между вертикальными σ и боковыми τ напряжениями (рис.7). Анализируя график, который описывается уравнением Кулона, получаем параметры прочности песка φ и c (табл. 6).

Таблица 6 Значения испытаний на одноплоскостной срез для песка мелкого

Наименование грунта	σ, кПа	τ, кПа	φ , град	<i>c</i> , кПа
	100	74,5		
Песок мелкий	200	137,2	32	1,8
рыхлый $e_0\!\!=\!\!1,\!03$	300	164,1		
	400	277,2		
	100	105,6		
Песок мелкий	200	227,1	42,35	14,56
плотный e_0 =0,56	300	287,9		
	400	365.5]	

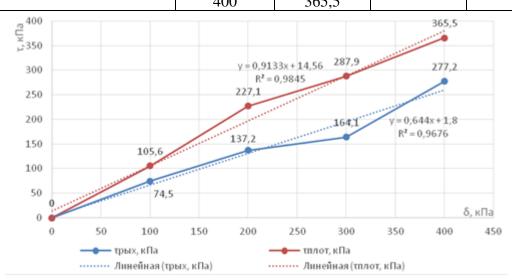


Рис. 7. – Зависимость между вертикальными и боковыми напряжениями

Сравнение и интерпретация результатов

Целью данных исследований является выявление строгой корреляции результатов определения характеристик грунта φ и c между экспериментальными (одометр с измерением боковых напряжений) и стандартными (одноплоскостной срез) методиками проведения испытаний. Сравним результаты испытаний в табличном (табл.7, 8) и графическом видах (рис.8, 9).

Таблица 7 Сводная таблица прочностных характеристик для песка рыхлого

Песок	Одометр с измерением	Одноплоскостной	Корреляционный
$e_0 = 1.03$	боковых напряжений	срез	коэффициент
φ, град	18,1	32	1,7
c, кПа	-2,74	1,8	

Таблица 8 Сводная таблица прочностных характеристик для песка плотного

Песок	Одометр с измерением	Одноплоскостной	Корреляционный
$e_0 = 0.56$	боковых напряжений	срез	коэффициент
φ , град	27	42,35	1,5
<i>c</i> , кПа	0,225	14,56	

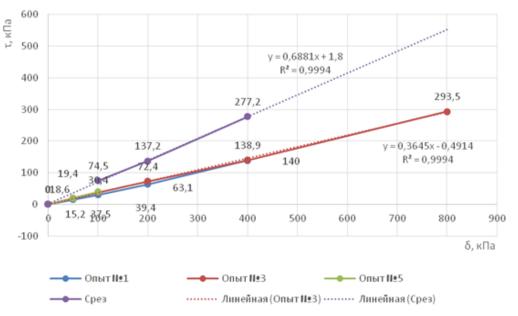


Рис. 8. — Зависимость между нормальными σ и боковыми τ напряжениями в песке сухом рыхлом (e=1,03)

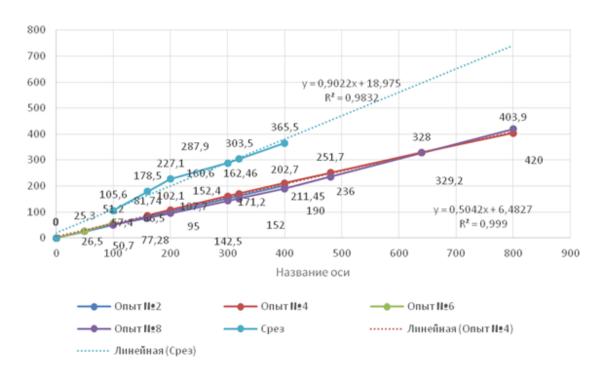


Рис.9. — Зависимость между нормальными σ и боковыми τ напряжениями в песке сухом плотном (e=0,56)

В результате проведенных экспериментов сделаны следующие выводы:

- результаты, полученные при испытании в экспериментальном одометре, не совпадают с результатами, полученными в классической методике испытания одноплоскостным срезом;
- выявлена корреляция результатов для песка мелкого в сухом состоянии: в рыхлом сложении (e_0 =1.03) коэффициент перехода к значениям среза составляет 1,7; в плотном сложении (e_0 =0,56) коэффициент перехода к значениям среза 1,5.

Таким образом, целесообразность использования одометра с измерением боковых напряжений не может быть подтверждена или опровергнута. Существует вероятность того, что метод справедлив при использовании некоторых корреляционных коэффициентов. Следовательно, в дальнейшем необходимо проведение испытаний на разных видах грунта с возможным составлением таблиц переходных коэффициентов.

Литература

- 1. Болдырев Г.Г., Барвашов В.А., Идрисов И.Х., Хрянина О.В. Комплексная технология инженерно-геологических изысканий // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. 2017. Т. 8. №3. С. 22-33.
- 2. Калошина С.В., Шаламова Е.А., Безгодов М.А. Особенности инженерных изысканий и геотехнического моделирования объектов в условиях плотной городской застройки // Академический Вестник УралНИИпроект РААСН. 2016.№3. С. 72-78.
- 3. Шеина С.Г., Крикунов Ф.А, Соболевский А.И. Исследования возведения объектов строительства в сложных инженерно-геологических условиях (на примере г. Ростова-на-Дону) // Инженерный вестник Дона, 2018, №1. URL: ivdon.ru/ru/magazine/archive/n1y2018/4626.
- 4. Болдырев Г.Г. Методы определения механических свойств грунтов с комментариями к ГОСТ 12248-2010. М.: ООО «Прондо», 2014. 812 с.
- 5. Пыхтеева Н.Ф., Миронова В.И., Львов Д.О. Испытания грунтов в Уральском федеральном университете // Академический Вестник УралНИИпроект РААСН. 2014. №2. С.87-91.
- 6. Кудашева М.И., Загитдинова Т.В., Калошина С.Б. Результаты лабораторных исследований характеристик глинистого грунта // Современные технологии в строительстве. Теория и практика. 2018. Т.1. С.71-80.
- 7. Dyvik R., Laclasse S., Martin R. Coefficient of Lateral Stress from Oedometer Cell // Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1985.Vol. 2, pp. 1003-1006.
- 8. Davison L.R., Atkinson J.H. Continuous Loading Oedometer Testing of Soils // Quarterly Journal of Engineering Geology. 1990. Vol. 23. pp.347-355.

- 9. Onitsuka, K., Hong, Z., Yoshitake, S. Interpretation of Oedometer Test Data for Natural Clays // Soils and Foundations. 1995. Vol. 35. No. 3. P.61-70.
- 10. Маклаков С.Ф., Мишин В.А. Экспериментальное определение предела прочности грунта на сдвиг при динамическом нагружении // Инженерный вестник Дона, 2017, №1. URL: ivdon.ru/ru/magazine/archive/n4y2017/4476.
- 11. Mayne P.W. Determinning OCR in Clays from Laboratory Strength // ASCE Journal of Geotechnical Engineering. 1988. Vol. 114. No. 1. P.76-92.
- 12. Хрянина, О.В. Экспериментально-теоретическая оценка совместной работы конструкции гибкого фундамента с армированным основанием: дис. ... канд. техн. наук: 05.23.01/О.В. Хрянина. Пенза, 2005. 223 с.

References

- 1. Boldyrev G.G., Barvashov V.A., Idrisov I.Kh., Hryanina O.V. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Stroitelstvo i arkhitektura. 2017. T. 8. №3. pp. 22-33.
- 2. Kaloshina S.V., Shalamova E.A., Bezgodov M.A. Akademicheskij vestnik UralNIIproekt RAASN. 2016. № 3. pp. 72-78.
- 3. Sheina S.G., Krikunov F.A, Sobolevskij A.I. Inzhenernyj vestnik Dona, 2018, №1. URL: ivdon.ru/ru/magazine/archive/n1y2018/4626.
- 4. Boldyrev G.G. Metody opredeleniya mekhanicheskikh svoystv gruntov s kommentariyami k GOST 12248-2010 [Methods for determining the mechanical properties of soils with comments to GOST 12248-2010]. M.: OOO «Prondo», 2014. 812 p.
- 5. Pyhteeva N.F., Mironova V.I., L'vov D.O. Akademicheskij Vestnik UralNIIproekt RAASN. 2014. №2. pp.87-91.
- 6. Kudasheva M.I., Zagitdinova T.V., Kaloshina S.B. Sovremennye tekhnologii v stroitel'stve. Teoriya i praktika. 2018. T.1. pp.71-80.

- 7. Dyvik R., Laclasse S., Martin R. Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering. San Francisco. 1985. Vol. 2. pp. 1003-1006.
- 8. Davison L.R., Atkinson J.H. Quarterly Journal of Engineering Geology. 1990. Vol. 23. pp.347-355.
- 9. Onitsuka K., Hong Z., Yoshitake S. Soils and Foundations. 1995. Vol. 35. No. 3. pp.61-70.
- 10. Maklakov S.F., Mishin V.A. Inzhenernyj vestnik Dona, 2017, №1. URL: ivdon.ru/ru/magazine/archive/n4y2017/4476.
- 11. Mayne P.W. ASCE Journal of Geotechnical Engineering. 1988. Vol. 114. No. 1. pp.76-92.
- 12. Hryanina O.V. Eksperimentalno-teoreticheskaya otsenka sovmestnoy raboty konstruktsii gibkogo fundamenta s armirovannym osnovaniyem [Experimental and theoretical evaluation of the joint work of a flexible foundation structure with a reinforced base]: dis. ... kand. tekhn. nauk: 05.23.01/O.V. Khryanina. Penza. 2005. 223 p.