Имитационные модели напорного устройства бумагоделательной машины

М.С. Ревунов, Е.Н. Салмов

Пензенский государственный университет, Пенза

Аннотация: Напорное устройство бумагоделательной машины (БДМ) представляет из себя достаточно сложный объект регулирования со множеством внутренних и внешних связей, требующий современных, интеллектуальных алгоритмов и систем управления. Внедрение подобных АСУТП сдерживается высокими требованиями к квалификации обслуживающего персонала. Таким образом, поставлена цель — на базе производственного эксперимента и имитационного моделирования получить адекватные модели напорного устройства, провести их редукцию и валидацию, что позволит применять традиционные регуляторы и методы управления.

Ключевые слова: Бумагоделательная машина, напорное устройство, напуск бумажной массы, давление "воздушной подушки", имитационное моделирование, PID-регулятор.

Имитационная модель исполнительного устройства

Общее давление в напорном устройстве складывается из двух составляющих – уровня бумажной массы в ящике и давления "воздушной подушки" [1]. Требуемый уровень бумажной массы в таких системах поддерживается смесительным насосом [2], а давление "воздушной подушки" – компрессором с частотным преобразователем (ЧП) [3,4]. Зависимость между входным управляющим воздействием на ЧП и оборотами компрессора представлена на рис. 1.

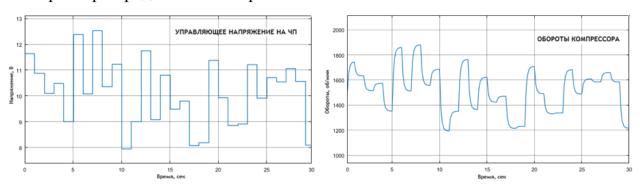


Рис. 1. – Экспериментальные данные о зависимости входного и выходного параметров исполнительного устройства

Используя данные производственного эксперимента и инструменты идентификации по временным характеристикам System Identification Toolbox MATLAB, найдем передаточную функцию компрессора (рис. 2).

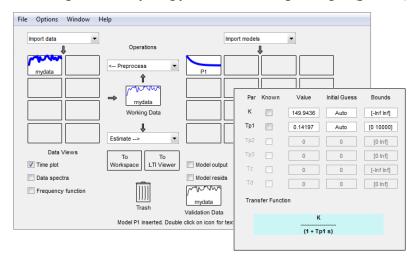


Рис. 2. – Поиск передаточной функции исполнительного устройства с помощью System Identification Toolbox

Передаточная функция компрессора имеет вид (1):

$$W_{UM}(p) = \frac{150}{0.142 \cdot p + 1} \quad (1)$$

Адекватность имитационной модели компрессора проверялась в соответствии с алгоритмом:

- 1) на вход Simulink-модели компрессора подавались данные производственного эксперимента ($U_{\text{эксп}}$ управляющее напряжение);
- 2) на выходе Simulink-модели фиксировались обороты двигателя компрессора в минуту (R_{pacy});
- 3) вычислялась остаточная дисперсия $S^2_{\text{ост}}$, характеризующая отклонение рассчитанного по модели числа оборотов двигателя компрессора в минуту ($R_{\text{расч}}$) от экспериментальных значений ($R_{\text{эксп}}$);
- 4) вычислялась дисперсия относительного среднего S^2_y , характеризующая отклонение экспериментальных значений ($R_{\rm эксп}$, об/мин) от средних;
 - 5) рассчитывались соотношения F между S_y^2 и S_{oct}^2 ;

6) по значениям F и таблице F-критерия Фишера (уровень значимости α =0,05) делался вывод об адекватности имитационной модели [5,6].

Таким образом, имитационная модель компрессора является адекватной, т.к. не отличается по признаку вариативности результатов от реального объекта.

Имитационная модель напорного устройства

Напорное устройство, как объект управления, можно разделить на две подсистемы: пневматическую и гидравлическую [7,8]. В случае с пневматической составляющей на выходе объекта фиксировалось общее давление в напускном устройстве, а в случае с гидравлической составляющей – скорость напуска бумажной массы на сеточную часть БДМ (рис. 3).

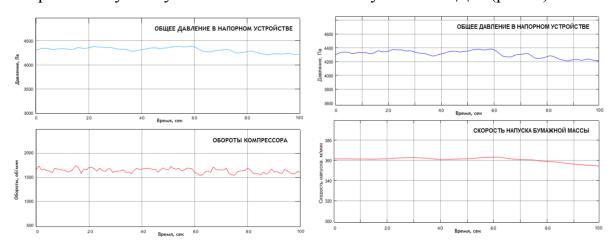


Рис. 3. – Данные о зависимости входных и выходных параметров составляющих напорного устройства

Передаточные функции пневматической и гидравлической составляющих напорного устройства имеют вид (2):

$$W_{\Pi H_{R}}(p) = \frac{2.62}{0.8 \cdot p + 1}$$
 (2)
 $W_{\Gamma H_{R}}(p) = \frac{0.0834}{1.5 \cdot p + 1}$

Адекватность моделей, как и в предыдущем пункте, была подтверждена по значению соотношений F и таблице F-критерия Фишера при уровне значимости α =0,05 ($F_{\Pi H \text{s}} < F_{0.05}$, т.к. 1,006 < 1,26 и $F_{\Gamma H \text{s}} < F_{0.05}$, т.к. 0,7303 < 1,26).

Общая имитационная Simulink-модель объекта управления в условиях стабильности уровня бумажной массы представлена на рис. 4 и рис. 5.

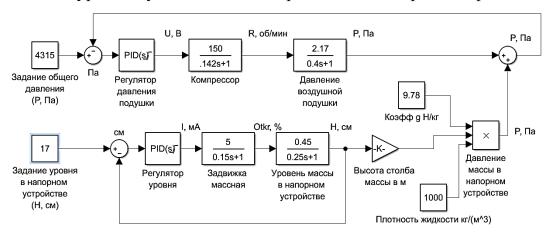


Рис. 4. — Расширенная Simulink-модель пневматической составляющей напорного устройства



Рис. 5. – Упрощенная Simulink-модель напорного устройства

Заключение

Имитационные модели напорного устройства позволили разработать на базе программного обеспечения DataRate 3.3, Matlab R2016b [9] и OPC-Matrikon [10] проект виртуальной системы "Основы управления напорным устройством", используемый на бумажных фабриках для повышения квалификации операторов БДМ.

Литература

- 1. Лысова Н.В., Мясникова Н.В. Регулирование веса бумажного полотна на основе метода экстремальной фильтрации для систем реального времени с помощью покадровой обработки сигнала // Инженерный вестник Дона, 2019, №5 URL: ivdon.ru/ru/magazine/archive/n5y2019/5882.
 - 2. Фляте Д.М. Свойства бумаги. М.: Лань, 2012. 384 с.
 - 3. Иванов С.Н. Технология бумаги. М.: Школа бумаги, 2006. 310 с.
- 4. Niskanen K. Paper physics (Papermaking Science and Technology). Helsinki: Tappi, 2008. 324 p.
- 5. Никулин С.В. Совершенствование функциональных подсистем АСУТП бумажного производства на основе экстремального, нейросетевого и предиктивного управления: дис. ... канд. техн. наук: 05.13.06. Пенза, 2016. 160 с.
- 6. Авдеева О.В., Артамонов Д.В., Никулин С.В., Семенов А.Д. Экстремальное управление инерционным объектом с запаздыванием в условиях сильных помех // Известия высших учебных заведений. Поволжский регион. Технические науки. 2014. № 3. 54-64 с.
- 7. Ревунов М.С., Салмов Е.Н. Моделирование поверхности потока бумажной массы на сетке бумагоделательной машины // Измерение. Мониторинг. Управление. Контроль. 2020. № 1(31). 43-50 с.
- 8. Ревунов М.С. Совершенствование систем стабилизации параметров потока бумажной массы с использованием кросскорреляционного алгоритма // Измерение. Мониторинг. Управление. Контроль. 2018. №4(26). с. 24-31.
- 9. Андреев Д.А., Панфилов А.Н., Скоба А.Н. Управление операционными процессами операторов сложных систем // Инженерный вестник Дона, 2017, №3. URL: ivdon.ru/ru/magazine/archive/N3y2017/4322/.
- 10. Ross T.J. Fuzzy Logic with Engineering Applications, 4th Edition. USA, New Mexico: University of New Mexico, 2016. 580 p.

References

- 1. Lysova N.V., Mjasnikova N.V. Inzhenernyj vestnik Dona, 2019, №5. URL: ivdon.ru/ru/magazine/archive/n5y2019/5882.
 - 2. Fljate D.M. Svojstva bumagi [Properties of paper]. M.: Lan', 2012. 384 p.
- 3. Ivanov S.N. Tehnologija bumagi [Paper technology]. M.: Shkola bumagi, 2006. 310 p.
- 4. Niskanen K. Paper physics [Papermaking Science and Technology]. Helsinki: Tappi, 2008. 324 p.
- 5. Nikulin S.V. Sovershenstvovaniye funktsional'nykh podsistem ASUTP bumazhnogo proizvodstva na osnove ekstremal'nogo, neyrosetevogo i prediktivnogo upravleniya [Improvement of functional subsystems of papermaking process control systems based on extreme, neural network and predictive control]: dis. ... kand. tekhn. nauk: 05.13.06. Penza, 2016. 160 s.
- 6. Avdeeva O.V., Artamonov D.V., Nikulin S.V., Semenov A.D. Izvestija vysshih uchebnyh zavedenij. Povolzhskij region. Tehnicheskie nauki. 2014. № 3. pp. 54-64.
- 7. Revunov M.S., Salmov E.N. Izmerenie. Monitoring. Upravlenie. Kontrol'. 2020. №1 (31). pp. 43-50.
- 8. Revunov M.S. Izmerenie. Monitoring. Upravlenie. Kontrol'. 2018. №4 (26). pp. 24-31.
- 9. Andreev D.A., Panfilov A.N., Skoba A.N. Inzhenernyj vestnik Dona, 2017, №3. URL: ivdon.ru/ru/magazine/archive/N3y2017/4322/.
- 10. Ross T.J. Fuzzy Logic with Engineering Applications, 4th Edition. USA, New Mexico: University of New Mexico, 2016. 580 p.