Применение показателя колебательности динамической системы станка для идентификации катастрофического износа резца

А.И. Пономарев, А.А. Игнатьев

Саратовский государственный технический университет имени Гагарина Ю.А.

Аннотация: Исследование ведется с целью разработки метода контроля износа режущего инструмента для оценки периода замены режущего инструмента на основании вибрационных сигналов. Как средство измерений, применяется измеритель шума и вибрации ВШВ-003-М2. Произведена разработка методики по определению показателя катастрофического износа режущего инструмента по показателю колебательности с использованием автокорреляционной функции и амплитудно-частотной характеристики динамической системы. Метод отрабатывался на партии деталей с записью вибрационных показаний в формате wave-файла, посредством обработки показаний получен массив данных — показателей колебательности, позволяющих оценить изменения износа резца в ходе выполнения механической обработки. Контроль износа режущего инструмента необходим для своевременной замены режущих пластин.

Ключевые слова: показатель колебательности, катастрофический износ, инструмент, мониторинг состояния, вибрация, токарный станок, датчик.

Введение

время для конкурентоспособности на рынке производству нужно заниматься вопросом оптимизации в процессах обработки применением автоматизированных систем управления. Рациональное использование ресурсов предприятия, вопрос, что был открытым всегда, и сейчас, в пору распространения станков с ЧПУ, стал более Минимизировать простои и сократить цикл только важным. изготовления готовой продукции из заготовки – главный вопрос для любого предприятия, что заняло своё место на рынке предложений. Обеспечение непрерывного процесса производства и обработки деталей в течение

длительного периода времени с использованием как можно меньшего количества персонала – тема, напрямую связанная с актуальностью контроля состояния режущего инструмента. Только зная периодичность износа режущего инструмента, мы способны правильно оценить и спланировать подконтрольном оборудовании. производство на характеристики металлообрабатывающего станка, как отмечается в серии достаточно известных трудов [1,2], представляют собой один из наиболее факторов, определяющих качество механической обработки. Вопросам контроля состояния режущего инструмента было посвящено множество трудов как отечественных, так и зарубежных ученых, таких, как М.М. Аршанский [3], Г.М. Мартинов [4], М.П. Козочкин [5, 6], А.К. Тутенгольд и др. Они изучали вопросы, в основе своей связанные с обеспечением надежности режущего инструмента, повышения его износостойкости, методы и средства управления процессом износа в условиях автоматизированного производства. Контроль износа режущего инструмента - актуальный и результативный способ, особенно полезный в процессах механической обработки с целью предотвращения нанесения повреждений оборудованию И обрабатываемой детали. В связи вышесказанным, научный И практический интерес представляет теоретическое и экспериментальное обоснование возможности распознания ранней фазы развития катастрофического износа резца по стохастическим характеристикам виброакустических колебаний.

Современные методы оценки

Метод траекторий для измерения износа резца. Используется для измерения силы резания, для контроля точности изготовления деталей и других целей [7]. Износ режущего инструмента оценивается по изменению траектории формообразования.

По экспериментальным данным происходит построение траекторий оси заготовки и вершины резца в ортогональной системе координат, с построением базовой окружности для траектории оси заготовки.

По полученным построениям оценивают взаимосвязь износа резца и траектории формообразования. При одинаковых факторах износ резца и соответствующая ему величина смещения заметно проявляется при переходе от холостого хода к резанию.

Оценка состояния режущей части инструмента по 3d моделям в системах технического зрения. Реализована в системе технического зрения для оценки износа режущей части инструмента. Программа состоит из подсистемы многовидовой реконструкции, подсистемы сравнения полигональных 3D моделей, подсистемы визуализации результатов работы и подсистемы графического интерфейса [8].

Точность оценки формы объектов зависит от точности реконструкции полигональной модели объекта. Для уменьшения величины ошибки, все координаты вершин полигонов умножаются на масштабный коэффициент, что обратно пропорционален шагу дискретизации полигонов моделей.

Метод акустической эмиссии. При обработке резанием в различных источниках возникают напряжения в виде упругих волн, известные, как акустическая эмиссия (АЭ) [9].

Уровень АЭ остается практически постоянным при любой ширине резания, поэтому был сделан вывод, что основным механизмом АЭ при резке металла является трение скольжения между инструментом и заготовкой [10]. Из чего следует, что АЭ меняется при износе инструмента в зависимости от влияния на трение скольжения.

Как альтернатива предложенным выше методам, предлагается вибрационный метод контроля с использованием показателя колебательности.

Мониторинг на основе вибраций включает в себя неразрушающий контроль на месте, и анализ работы системы - во временной, частотной или же модальной областях - для идентификации изменений в состоянии объекта. Контроль состояния режущего инструмента способствует оценке износа, с последующим сбором статистических данных для оценки качества используемого инструмента [11].

Для контроля состояния инструмента используются разные датчики: мощности, акустической эмиссии, вибрации, крутящего момента, силы, наблюдения и т.д. Обработка и анализ сигналов помогают повысить надежность, сократить время простоя и улучшить качество обработанных изделий [12].

Износ режущего инструмента можно поделить на 2 вида: (а) постепенный, из-за потери материала на режущих кромках или из-за износа в процессе трения и приводящий к поломке режущего инструмента через определенное время; и (б) преждевременный износ, который происходит непредсказуемо из-за неправильных параметров обработки или из-за дефектного инструмента. По мере износа инструмент достигает конца срока службы, и качество обработанной поверхности может ухудшаться. Свойства обрабатываемых поверхностей напрямую связаны с состоянием режущего инструмента.

Экспериментально-аналитический метод идентификации с использованием показателя колебательности

Частотный диапазон для мониторинга состояния инструмента обычно колеблются в пределах от 1 до 8 кГц. Сигнал состоит в основном из низкочастотных составляющих, которые являются индикаторами статических сил резания. Силы в этом диапазоне называются динамическими силами резания [13]. Вне этого диапазона присутствуют собственные частоты режущего инструмента, не превышающие 4 кГц. Для очистки

данных от шумов применяется фильтр для частот ниже 50 Гц, который "обрезает" внешние шумы и помехи от двигателей [14].

Метод с использованием показателя колебательности предусматривает строгую очередность.

На основные узлы токарного станка (шпиндель, резцедержатель) устанавливаются датчики вибрации. Замеры данных процесса обработки показанные на рис. 1, сохраняются в виде WAVE-файла и доступны для дальнейшей обработки и анализа [15].

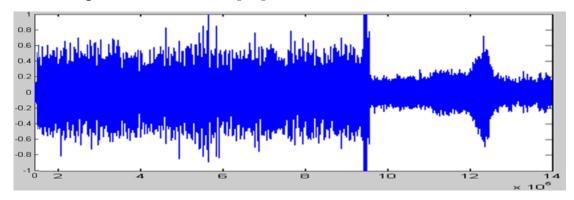


Рис. 1. – Запись вибраций резцового блока при точении детали

По измерениям вибраций, строится автокорреляционная функция (АКФ) и выполняется аппроксимация, в итоге получаем уравнение:

$$K(\tau) = A \cdot e^{-a\tau} (1 + m \cdot \cos\Omega\tau) \cdot \cos\omega_0\tau \tag{1}$$

где: А - постоянный коэффициент, а - коэффициент затухания, $\omega 0$ - частота огибающей АКФ, Ω - частота основного АКФ, m - коэффициент модуляции.

После подставления коэффициентов, входящих в передаточную функцию, и обработки автокорреляционную функцию, выводится новая.

$$W_3(p) = \frac{A(1+m)\sqrt{2}[(p+a)^2 + \omega_0^2]}{[(p+a)^2 + (\omega_0 + \Omega)^2][(p+a)^2 + (\omega_0 - \Omega)^2]}$$
(2)

Частотная функция $W_3(jw)$ получается путём замены P=jw, после чего амплитудно-частотная характеристика A(w) может быть определена [16]. Сравнив начальное и максимальное значение амплитудно-частотной

характеристики, получается соответствующий коэффициент колебательности.

$$M_{\text{max}} = \frac{[A(\omega)]_{\text{max}}}{A(0)}$$
 (3)

Сравнив полученное значение с эталонным, можно судить о степени износа инструмента. Максимально допустимое значение показателя колебательности не может превысить эталонное, более чем в 1,5 раза [17]. Выход за пределы говорит о критическом износе и недопустимости использования инструмента.

Метод с применением показателя колебательности динамической системы возможно использовать в условиях производства с предварительной подготовкой обучающего эксперимента, алгоритм которого представлен на рис. 2.

Рис. 2. — Алгоритм использования метода с применением показателя колебательности динамической системы на производстве.

Результаты исследований

В ходе эксперимента была поставлена цель определить время смены режущей пластины инструмента. Регистрация информации о вибрации и нагрузке в процессе резания ведется с помощью измерителя шума и вибрации ВШВ-003-М2. Процесс записи осуществляется в аудио-редакторе WAVE-Lab [15].

Измерения вибраций производились на токарном станке с ЧПУ ТПК-125, при постоянных значениях режимов резания: скорость вращения шпинделя - 1200 об/мин, припуск 0,1 мм, подача при чистовой обработке – 0,075 мм/мин. Обрабатываемые детали — направляющие втулки, ст.20 обрабатываемый диаметр 25. В ходе обработки были применены сменные пластины SANDVIK VBMT 11 03 04-MF 1115.

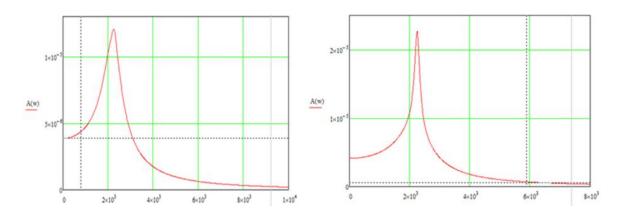


Рис. 3. – Амплитудно-частотные характеристики динамической системы при точении 1-ой и 58-ой детали.

До начала эксперимента цикл смены пластин ограничивался 35 деталями. Необходимо определить целесообразность частоты замены. В ходе эксперимента выявилась зависимость между значением показателя колебательности и шероховатостью обработанных поверхностей. Итоги измерений приведены в таблице №1.

Анализ полученных результатов показал, что тенденция к неустойчивому состоянию инструмента начинается с 58-ой детали после смены пластины.

Таблица № 1 Результаты испытаний с поиском показателя колебательности

№	Показатель	Допуск по	Фактический результат по
детали	колебательности	шероховатости,	шероховатости
		Rz, мкм	Rz, мкм
1	1	4,5	1,53
2	4,58	4,5	1,59
3	4,6	4,5	1,65
4	4,61	4,5	1,72
10	4,63	4,5	1,74
15	4,63	4,5	1,79
24	4,68	4,5	1,85
28	4,68	4,5	1.87
29	4,7	4,5	1,88
40	4,9	4,5	3,42
41	4,9	4,5	3,46
42	4,9	4,5	3,5
50	5,2	4,5	3,71
52	5,25	4,5	3,84
55	5,27	4,5	3,97
58	7,05	4,5	5,05
60	7,1	4,5	5,14
63	7,3	4,5	5,2

Заключение

Использование метода с применением показателя колебательности динамической системы позволило оценить рациональность смены режущих пластин при обработке. Смена инструмента происходила излишне рано, реальная потребность для получения нужных требований к качеству обрабатываемых поверхностей детали, нужна на 18 деталей позже, нежели было рекомендовано ранее в рамках производства.

Определение наступления катастрофического износа режущего инструмента необходимо для снижения количества бракованных деталей. Использование показателя колебательности метода применением c динамической системы является менее требовательным к оборудованию по сравнению с другими методами диагностики, и дает большое разнообразие возможностей по применению показателя колебательности для анализа технологических процессов и производств.

Литература

- 1. Курило А.А., Сорокин М.А., Стародубцев Ю.И. Методика обработки результатов мониторинга с динамически изменяемым уровнем разрешающей способности базы данных // Инженерный вестник Дона, 2021. №3. URL: ivdon/ru/ru/magazine/archive/n3y2021/6882/.
- 2. Игнатьев А.А., Добряков В.А., Захарченко М.Ю., Игнатьев С.А., Каракозова В.А., Березина Е.В. Автоматизированный неразрушающий контроль в системе мониторинга технологического процесса производства подшипников // Инженерный вестник Дона, 2021. № 9. URL: ivdon.ru/ru/magazine/archive/n9y2021/7193/.
- 3. Аршанский М.М., Щербаков В.П. Вибродиагностика и управление точностью на металлорежущих станках. М.: Машиностроение. 1988. 136 с.
- Мартинов Г.М., Григорьев А.С. Диагностирование режущих инструментов и прогнозирование остаточной стойкости на станках с ЧПУ в процессе обработки // СТИН. 2012. № 2. С. 23-28.
- Козочкин М.П., Гурин В.Д., Сабиров Ф.С. Диагностика и мониторинг сложных технологических процессов с помощью измерения виброакустических сигналов // Измерительная техника. 2006. № 7. С.30-34.

- Козочкин М.П., Сабиров Ф.С. Оперативная диагностика при металлообработке – проблемы и задачи // Вестник МГТУ «Станкин». 2008. № 3. С. 4-18.
- Юркевич В. В. Использование метода траекторий для измерения износа резца // Санкт-Петербург: журнал «Металлообработка» №67 (1), Издательство "Политехника", 2012. С. 2-4.
- 8. Бабилунга О. Ю., Деревянченко А. Г., Яремчук А. С., Гоцонога П. В. Оценка состояния режущей части инструмента по 3d моделям в системах технического зрения. Електротехнічні та комп'ю-терні системи. К. :– 2017. Вип. 13(89). С. 77 83.
- De Silva C.W. (ed.) Vibration Monitoring, Testing, and Instrumentation / C.W. De Silva (ed.) // CRC Press, Taylor & Energy Services Group, 2007. 696 p.
- 10.Подураев В.Н., Барзов А.А., Горелов В.А. Технологическая диагностика резания методом виброакустической эмиссии. М.: Машиностроение, 1988. 56 с.
- 11. Костюков В.Н., Науменко А.П. Основы виброакустической диагностики и мониторинга машин. Омск: Издательство Омского государственного технического университета, 2011. 360 с.
- 12. Никитин Ю.Р., Абрамов И.В. Диагностика мехатронных систем: учебник Электрон. Текстовые данные. Саратов: Университетское образование, 2019. 116 с.
- 13. Григорьев С.Н., Гурин В.Д., Козочкин М.П. Диагностика автоматизированного производства. Москва: Машиностроение, 2011. 600 с.
- 14.Пономарев А.И., Игнатьев А.А. Контроль износа резца по вибрационным характеристикам // Автоматизация и управление в

- машино- и приборостроении: сб. науч. тр. Саратов: СГТУ, 2020. С. 74-77.
- 15.Пономарев А.И., Игнатьев А.А. Контроль состояния инструмента при токарной обработке на основе оценки показателя колебательности динамической системы // Вестник Саратовского государственного технического университета. 2020. № 3 (86). С. 19-24.
- 16. Бесекерский В.А., Попов Е.В. Теория систем автоматического регулирования. М.: Наука, 1975. 768 с.
- 17.Игнатьев А.А., Добряков В.А., Игнатьев С.А. Автоматизированное распознавание катастрофического износа инструмента по стохастическим характеристикам виброакустических колебаний: монография. Саратов: Сарат. гос. техн. ун-т, 2020. 84 с.

References

- 1. Kurilo A.A., Sorokin M.A., Starodubcev Ju.I. Inzhenernyj vestnik Dona, 2021, №3. URL: ivdon/ru/ru/magazine/archive/n3y2021/6882/.
- 2. Ignat'ev A.A., Dobryakov V.A., Zaharchenko M.Yu. Inzhenernyj vestnik Dona, 2021, №9. URL: ivdon.ru/ru/magazine/archive/n9y2021/7193/.
- 3. Arshanskij M.M., Shherbakov V.P. Vibrodiagnostika i upravlenie tochnost'ju na metallorezhushhih stankah [Vibration diagnostics and precision control on machine tools]. M.: Mashinostroenie. 1988. 136 p.
- 4. Martinov G.M., Grigor'ev A.S. STIN. 2012. № 2.pp. 23-28.
- 5. Kozochkin M.P., Gurin V.D., Sabirov F.S. Izmeritel'naja tehnika. 2006. №7. Pp.30-34.
- Kozochkin M.P., Sabirov F.S. Vestnik MGTU «Stankin». 2008. № 3. pp. 4-18.
- 7. Jurkevich V. V. Sankt-Peterburg: zhurnal. Metalloobrabotka №67 (1), Izdatel'stvo "Politehnika", 2012. Pp.2-4.

- 8. Babilunga O.Ju., Derevjanchenko A.G., Jaremchuk A.S., Goconoga P.V. Elektrotehnichni ta komp'ju-terni sistemi. K.: 2017. Vip. 13(89). 77. 83 p.
- 9. De Silva C.W. (ed.). CRC Press, Taylor & Samp; Francis Group, 2007. 696 p.
- 10. Poduraev V.N., Barzov A.A., Gorelov V.A. Tehnologicheskaja diagnostika rezanija metodom vibroakusticheskoj jemissii [Technological diagnosis of cutting using vibroacoustic emission]. M.: Mashino-stroenie, 1988. 56 p.
- 11.Kostjukov V.N. Osnovy vibroakusticheskoj diagnostiki i monitoringa mashin [Fundamentals of vibroacoustic diagnostics and machine monitoring]. Omsk : Izdatel'stvo Omskogo gosudarstvennogo tehnicheskogo universiteta, 2011. 360 p.
- 12.Nikitin Ju.R. Diagnostika mehatronnyh sistem: uchebnik [Diagnostics of mechatronic systems: textbook]. Jelektron. Tekstovye dannye. Saratov: Universitetskoe obrazovanie, 2019. 116 p.
- 13. Grigor'ev S.N. Diagnostika avtomatizirovannogo proizvodstva [Diagnosis of automated production]. Moskva: Mashinostroenie, 2011. 600 p.
- 14.Ponomarev A.I., Ignat'ev A.A. Kontrol' iznosa rezca po vibracionnym harakteristikam [Checking cutter wear against vibration characteristics]. Avtomatizacija i upravlenie v mashino- i priborostroenii: sb. nauch. tr. Saratov: SGTU, 2020. 74-77 p.
- 15.Ponomarev A.I., Ignat'ev A.A. Vestnik Saratovskogo gosudarstvennogo tehnicheskogo universiteta. 2020. № 3 (86). 19-24 p.
- 16.Besekerskij V.A., Popov E.V. Teorija sistem avtomaticheskogo regulirovanija [Theory of automatic control systems]. M.: Nauka, 1975. 768 p.
- 17.Ignat'ev A.A., Dobrjakov V.A., Ignat'ev S.A.1 Avtomatizirovannoe raspoznavanie katastroficheskogo iznosa instrumenta po stohasticheskim harakteristikam vibroakusticheskih kolebanij: monografija [Automated

recognition of catastrophic tool wear by stochastic characteristics of vibroacoustic vibrations: monograph]. Saratov: Sarat. gos. tehn. un-t, 2020. 84 p.