Анализ смертельного травматизма в строительной отрасли Российской Федерации и ряде других зарубежных стран

H.B. Матюшева 1 , B.M. Худякова 1 , C.A. Войнаш 2 , Л.С. Сабитов 3,4

¹ Санкт-Петербургский государственный аграрный университет, Санкт-Петербург

² Казанский федеральный университет, Казань
³ Казанский государственный энергетический университет, Казань
⁴Национальный исследовательский Московский государственный строительный университет, Москва

Аннотация: На протяжении многих лет строительная отрасль как в сельском хозяйстве, так и среди других отраслей в целом, остается одной из самых травмоопасных не только на территории Российской Федерации, но и в ряде других зарубежных стран. В строительном секторе занято значительное количество трудоспособного населения, а несчастные случаи приводят к серьезным последствиям. Ежегодно на строительных площадках случаются более тысячи несчастных случаев, приводящих к тяжелым травмам и даже смерти работников. К основным источникам травмирования работников в строительстве относят падение с высоты, обрушение конструкций, поражение электрическим током и травмы, связанные с использованием строительных машин и механизмов. Причины производственного травматизма многочисленны и включают в себя такие факторы, как пол, возраст, стаж работы, квалификация, виды выполнения работы, организация труда, социально-экономические условия и другие. Статистические данные свидетельствуют о хоть и незначительном, но снижении общего числа пострадавших от производственных травм. Конечно, нельзя говорить о том, что статистические данные полностью достоверны, это связано с нарушениями в предоставлении информации, несвоевременным предоставлением данных, их недостоверностью или полным сокрытием несчастных случаев предприятиями из-за высоких финансовых затрат. В данной статье анализируются основные причины смертельного травматизма в строительной отрасли Российской Федерации и ряде других зарубежных стран, включая падения с высоты, поражение электрическим током, травмы, связанные с использованием строительных машин и механизмов, а также воздействие вредных веществ. В заключение статья подчеркивает важность совместных усилий работодателей, работников и регулирующих органов по созданию более безопасной и здоровой рабочей среды в строительной отрасли. Реализация мер профилактики, описанных в статье, может значительно снизить риск несчастных случаев и улучшить благополучие работников.

Ключевые слова: строительная отрасль, производственный травматизм, несчастные случаи, причины травматизма, условия труда, профессиональные риски, работа на высоте, охрана труда, факторы производственной среды, организация рабочего места, обучение.

Введение. На протяжении развития человечества идет совершенствование условий труда, развитие технологий и внедрение инноваций в производственный процесс. На сегодняшний день любая

производственная деятельность связана с получением травм работниками различной степени.

Строительная отрасль является одной из наиболее важных отраслей мировой экономики, в ней занято около 100 миллионов человек и на нее приходится около 10% мирового ВВП, в связи с этим, она также является одной из самых травмоопасных с точки зрения производственного травматизма.

Ежегодно в мире происходит более 2,3 млн несчастных случаев со смертельным исходом и более 600 тысяч тяжелых несчастных случаев. Около 20% всех смертельных случаев травматизма на рабочих местах во всем мире приходится именно на строительную отрасль, если подытожить, то получается, что на строительных площадках каждый день в мире погибает более 600 работников и 1600 получают тяжелые травмы. Так, за 2021 год, на территории Соединенных Штатов Америки зафиксирован 991 смертельный случай, в Канаде – 218 случаев, а на территории Великобритании – 35 [1, 2].

На территории Российской Федерации в период с 2000 по 2022 год пострадало 1325,8 тыс. работников и 50,6 тыс. работников погибло (рис.1).

Самым травмоопасным федеральным округом России в 2022 году стал Центральный округ, в котором погибло 306 работников, в Приволжском округе - 223 работника, в Сибирском — 167 работников, в Уральском — 132 смертельных случая и в Южном федеральном округе 111 смертельных случая [3, 4].

В целом, по статистическим данным Росстата, смертельный травматизм на территории Российской Федерации не особо критичен, но если проанализировать источники статистической информации Федеральной службы по труду и занятости, Совета Профсоюзов, НОЙСТРОЙ и иные, мы поймем что информация везде будет разниться, конечно, это связано с несовершенством сбора и предоставления информации по травматизму,

поэтому окончательные выводы делать только, основываясь на анализе одной статистики сложно, но получить ориентировочную картину ситуации в отрасли возможно.

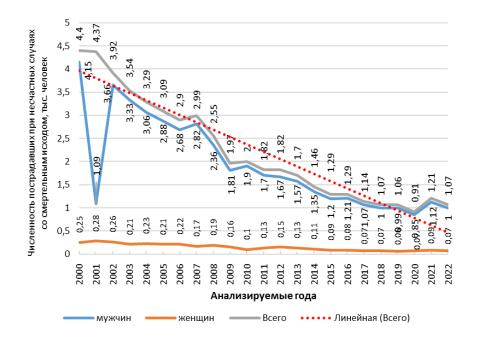


Рис. 1. – Динамика производственного травматизма со смертельным исходом на территории Российской Федерации в период с 2000 по 2022 гг.

Стоит всегда задумываться о том, что жизнь работников ценнее финансовых затрат любого предприятия.

Смертельный травматизм негативно сказывается не только на экономике отрасли в целом, но и имеет серьезные последствия для работодателей и родственников работников. Травмирование работников приводит к снижению производительности труда и увеличению финансовых затрат.

Материалы и методы исследования. Использовались официальные РΦ. источники Федеральной службы государственной статистики РΦ, Министерства труда социальной занятости Международной И организации труда. Объектом исследования стала строительная отрасль, а именно - строительные площадки на территории зарубежных стран и Российской Федерации в период с 2000-2022 года, с целью анализа и

выявления причин и факторов, оказывающих влияние на риск возникновения травмирования работников.

Результаты исследования и их обсуждение. В большинстве зарубежных стран, включая Великобританию, Канаду, Францию, Италию, Китай, Финляндию, Японию, Чехию, Турцию и Словакию, в период с 2020 по 2022 год наблюдается тенденция к снижению числа смертельных случаев в строительной отрасли по данным статистических бюро и организаций.

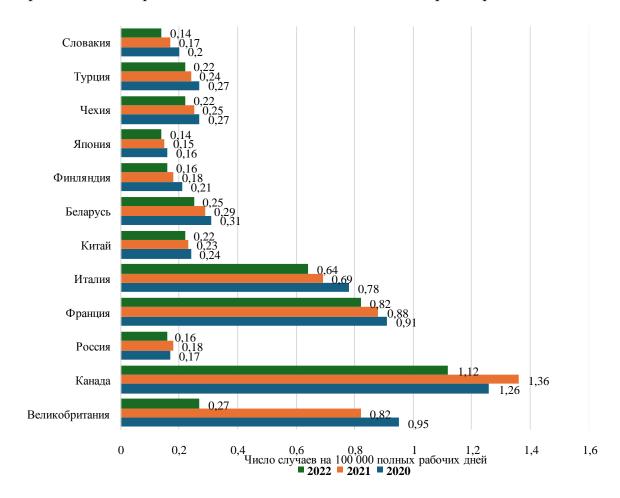


Рис. 2. – Статистика смертельных несчастных случаев в строительной отрасли в ряде стран в период с 2020 по 2022 гг.

Статистика смертельных несчастных случаев в строительной отрасли в расчете количества смертельных случаев на 100 000 полных рабочих дней. Анализируя смертельный травматизм в ряде зарубежных странах и на территории Российской Федерации в разрезе количества смертельных

случаев и их процентном сравнении 2020 и 2022 года, можно сделать выводы, что существует незначительный спад на территории Российской Федерации и Канады (рис. 2) [2].

Динамика количества смертельных несчастных случаев в ряде зарубежных стран в период 2020-2022 гг. более детально представлена на рис.3.

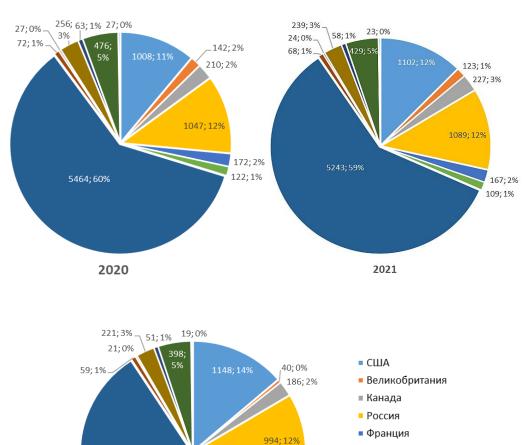


Рис. 3. – Динамика количества смертельных несчастных случаев в ряде зарубежных стран в период 2020-2022 гг.

2022

■ Италия■ Китай

Беларусь

Словакия

ФинляндияЯпонияЧехияТурция

155;2%

101;1%

За анализируемые три года видно, что критически высокий уровень смертельного травматизма фиксируется в Китае, Российской Федерации и США, это частично связано и с плотностью проживающего там трудоспособного населения и скоростью высотного строительства.

На данный момент точной статистики травматизма в строительной отрасли в РФ и в зарубежных странах по типу работ в процентах нет. Тем не менее, наиболее опасные виды работ в строительстве, которые чаще всего приводят к травмам, включают в себя:

- работы на высоте,
- земляные работы,
- работы с электрооборудованием,
- работы с кранами и подъемными механизмами.

Работники, выполняющие работы на высоте, имеют самый высокий риск смертельных случаев в строительной отрасли, например, в Словакии в 2022 году 63% смертельных случая в строительной отрасли приходились на падения с высоты [7], в Белоруссии 20% случаев — на поражение электрическим током и 15% — на травмы, связанные с транспортными средствами [8], в США 10% — на воздействие вредных веществ [9] и в Финляндии 10% приходится на травмы, связанные с падающими предметами [10].

Далее более детально были проанализированы случаи смертельного травматизма при работе на высоте при строительстве. По данным Роструда, в период с 2020 по 2022 год в России произошло 3 130 несчастных случаев со смертельным исходом при работе на высоте в строительстве, в 2020 году зафиксировано 1047 случая смертельного травматизма, в 2021 – 1089 случаев, в 2022 – 994 смертельных случаев.

Ниже в таблице 1 приведены данные по смертельному травматизму в разрезе ряда зарубежных стран по основным причинам травматизма в строительстве, на примере 2022 года, в том числе, в процентном соотношении [5, 6].

Таблица 1 Основные причины смертельного травматизма в строительной отрасли в ряде зарубежных стран в 2022 г.

№ п/ п	Страна	Падения с высоты		Поражение электрическ им током		Травмы, связанные с транспорт ными средствам и		Воздействи е вредных веществ		Травмы, связанные с падающим и предметам и	
		кол-во, чел	%	кол-во, чел	%	кол-во, чел	%	кол-во, чел	%	кол-во, чел	%
1.	Словакия	12	63	3	16	2	11	1	5	1	5
2.	Чехия	29	57	9	18	7	14	4	8	2	4
3.	Япония	125	57	32	14	29	13	18	8	17	8
4.	Финляндия	12	57	3	14	2	10	2	10	2	10
5.	Турция	217	54	75	19	53	13	28	7	25	6
6.	Китай	2703	54	798	16	634	13	402	8	336	7
7.	Италия	54	53	17	17	12	12	8	8	7	7
8.	Франция	76	49	23	15	18	12	12	8	11	7
9.	Беларусь	28	48	12	20	9	15	6	10	4	7
10.	Канада	83	45	27	15	22	12	17	9	13	7
11.	Великобритан	17	43	6	15	5	13	4	10	3	8
	ия										
12.	США	389	34	168	15	136	12	117	10	87	8

Одними из самых травмоопасных профессий являются: монтажникивысотники – от 37,4 до 43,9 % смертельных случаев, кровельщики – от 27,2 до 32,9 %, фасадчики – от 11.2 до 13,8 % и т.д., так в 2020 году 392 смертельных случая приходится на профессию монтажников-высотников и 285 случаев на кровельщиков, 117 случаев на фасадчиков, в 2021 – 414, 306 и 129 случаев, в 2022 – 436 случаев, 327 и 137 приходились на профессии монтажников-высотников, кровельщиков и фасадчиков. Если внимательно присмотреться, можно заметить, что с каждым годом количество

смертельных случаев растет, несмотря на возможное государственное регулирование, в части проверок инспектирующих органов [3].

Статистика производственного травматизма в строительной отрасли в зависимости от пола, возраста работника в период с 2020 по 2022 год в России, по годам представлена на рис.4.

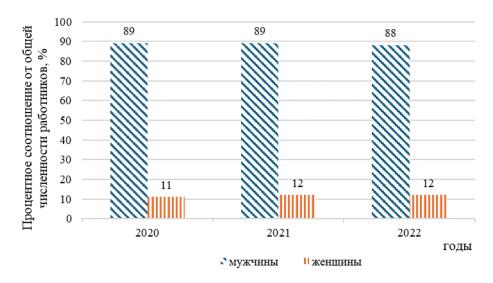


Рис. 4. – Процентное распределение смертельных несчастных случаев в зависимости от пола работников в период с 2020-2022 гг. [3]

Исходя из рисунка, видно, что более 88% смертельных случаев приходятся на мужчин, конечно, это не столь удивительно в связи с тем, что большая часть работ и сотрудников в строительной отрасли - мужчины, однако нельзя не отметить, что если травматизм среди мужчин падает, то среди женщин данный показатель растет из года в год. Во всех странах, не только на территории России, на мужчин приходится подавляющее большинство смертельных случаев в строительной отрасли, например, в США в 2022 году 94% смертельных случаев в строительной отрасли приходились на мужчин.

Уровень травматизма по-прежнему остается высоким, особенно среди мужчин, работников в возрасте от 30 до 59 лет и работников, выполняющих работы на высоте, см. рис.5.

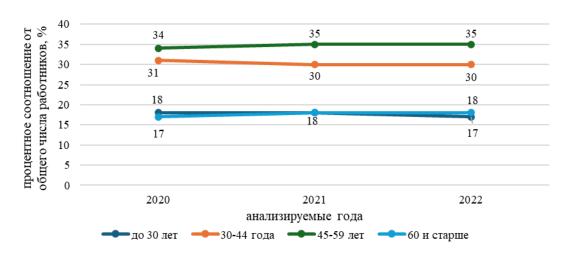


Рис. 5. – Процентное соотношение смертельных несчастных случаев в зависимости от возраста работников в период с 2020-2022 гг. [3].

Нарушители требований охраны труда в строительной отрасли по всему миру имеют ряд общих характеристик [11]:

- Мужчины составляют подавляющее большинство нарушителей требований охраны труда в строительной отрасли.
- Возраст работников, которые чаще всего нарушают охрану труда, от 30 до 45 лет. Работники в возрасте от 40 до 45 лет сталкиваются с более высоким риском смертельных случаев в строительной отрасли, например, в Великобритании в 2022 году 43% смертельных случаев в строительной отрасли приходились на работников в возрасте от 40 до 45 лет.
- Нарушители требований охраны труда часто имеют низкий уровень образования или не имеют профильного образования по виду выполняемых работ.
- Зачастую имеют небольшой опыт работы в строительной отрасли, негативно относятся к безопасности и не считают ее приоритетом.
- Личностные характеристики: часто импульсивны, склонны к риску и нетерпеливы.

Существует несколько причин, по которым нарушители охраны труда в строительной отрасли чаще всего находятся в возрасте от 30 до 45 лет [9,12]:

Во-первых, работники в возрасте от 30 до 45 лет часто имеют небольшой опыт работы, недостаточное обучение безопасным приемам ведения работ в строительной отрасли, импульсивны и не осознают всех рисков и склонны пренебрегать требованиям безопасности;

- во-вторых, данная возрастная группа характеризуется торопливостью, что проводит к ненадлежащим исполнениям требований безопасности труда.
- в-третьих, им присуще состояние стресса, возникающее от внешних факторов, таких, как финансовые нагрузки, семейные обязанности, сжатые сроки выполнения работ, что приводит к невнимательности на рабочем месте.

Несмотря на все вышеперечисленное, существует мнение, что в некоторых строительных организациях работники от 30 до 45 лет склонны нарушать требования безопасности, поскольку чувствуют свою безнаказанность вследствие недостаточного надзора со стороны руководства [13].

Строительный сектор вобрал в себя огромный перечень видов производимых работ, мероприятий, которые ограничивают сжатые сроки и графики выполнения работ, зачастую на одной площадке несколькими подрядчиками одновременно проводятся совмещенные работы. Недостаточное финансирование данных работ, недостаточная организация работ, особенно, по части охраны труда, способствует увеличению количества травматизма, а по итогу - и срывам сроков строительства.

Для выполнения требований безопасности, в каждой организации должна быть сформирована высокая культура безопасности труда, подкрепленная выделением должного финансирования и участия каждого члена организации в ее поддержании и совершенствовании [14]. Особое внимание должно уделяться обучению работников, причем такое обучение должно проводиться не только в теоретической, но и практической сфере

(Ferret, E. Health and safety in construction revision guide: for the HEBOSH national certificate in construction health and safety / E. Ferret // London: Rout ledge, 2016. - 255 p).

Как известно, охрана труда — это комплекс мероприятий, нацеленный на обеспечение безопасности труда, так, работодатели обязаны обеспечить безопасные условия труда в организации, не зависимо от того, в какой стране она находится, в том числе, за счет улучшения условий труда, модернизации и улучшения оборудования, закупки современных СИЗ. Но все мероприятия, осуществляемые работодателями, не будут эффективными, если в них не будет участвовать и сам работник, выполняя требования инструкций по охране труда, правил, нормативов, правильно используя средства коллективной и индивидуальной защиты [15].

Как уже говорилось выше, наряду с организационными мероприятиями необходимо внедрять новые инженерно-технические разработки, обеспечивающие безопасность работников — это разработка новых средств индивидуальной защиты, амортизаторов, анкерных точек и анкерных систем [16]. Вместе со средствами индивидуальной защиты необходимо уделять внимание средствам коллективной защиты и сигнализации — к этой категории можно отнести ограждения, сетки, сигнализацию и обозначение опасных зон.

В большинстве случаев, материалы расследования несчастных случаев, связанных с падениями с высоты и анализ этих причин, свидетельствуют о безответственном отношении работодателей к соблюдению требований охраны намеренном ИΧ игнорировании, труда или также 0 необеспеченности работников средствами индивидуальной защиты, неприменением их в процессе производственной деятельности, отсутствием условий для получения требуемых знаний у работников в области безопасного производства работ.

На сегодняшний день, в строительной отрасли падения с высоты (34%) — частый вид производственного травматизма, при этом, 18% случаев падения с высоты — смертельные случаи, а в 60% случаев падения с высоты влекут за собой нетрудоспособность работников.

Основными причинами падения с высоты являются отсутствие ограждений, предохранительных поясов, недостаточная прочность и устойчивость лесов, настилов, люлек, лестниц. Падения чаще всего происходят в тех случаях, когда работник при строительстве объекта находится вблизи открытых проемов, у края зданий (сооружений), на разрушенных балконах, переходит по балкам, конструкциям, а также выполняет работы на непрочных кровлях, на лесах, не имеющих ограждений, перемещается по приставным или навесным лестницам.

Кроме того, в 80% случаев работники получают тяжелые травмы или гибнут, вследствие неприменения средств индивидуальной защиты (СИЗ), предупреждающих падение с высоты [5]. Основными причинами неиспользования работниками СИЗ являются неудобные модели выданных поясов/привязей при работе на высоте, которые вызывают дискомфорт, имеют сложную конструкцию, а их применение занимает большое количество времени в случае использования.

Работодателям И работникам, занятым В строительной области, необходимо особое обеспечению безопасности, уделить внимание совершенствованию условий труда, и совместными усилиями привести Поскольку отрасль нулевым показателям травматизма. проблемы безопасности строительства в разных странах очень схожи, их можно рассматривать и решать в глобальном масштабе. В связи с этим, решения проблем безопасности в одной стране могут быть легко адаптированы под условия других стран и внедрены в них, что позволит еще больше повысить безопасность.

Выводы. Проведенный анализ смертельного травматизма В строительной отрасли, а это около 1000 случаев ежегодно в РФ и более 2,3 млн. случаев по всему миру, позволил сделать вывод о том, что к большому числу смертельных несчастных случаев приводит нарушение организационного отказы оборудования процесса, a именно при низкоквалифицированных Для использовании кадров. решения этой проблемы необходимо следующее: внедрение ІТ-технологий по обеспечению безопасности работ, например, система информирования работодателя об использовании или не использовании определенных СИЗ, закрепленных за работником, а также срабатывания аварийных датчиков и оповещений при наступлении нештатных ситуаций; разработка более эргономичных и мобильных страховочных средств при работе на высоте.

Литература

- 1. Бакиров А.Б., Карамова Л.М., Карамова Л.К., Власова Н.В., Шаповал И.В., Башарова Г.Р. Современные проблемы производственного травматизма со смертельным исходом // Медицина труда и экология человека, 2024. № 1. С. 25-48
- 2. Контарева В.Ю., Белик С.Н. Анализ производственного травматизма в сельскохозяйственной отрасли // XXI век: итоги прошлого и проблемы настоящего плюс, 2023. Т. 12, № 4(64). С. 250-258.
- 3. Результаты мониторинга условий и охраны труда в Российской Федерации в 2022 году. URL: eisot.rosmintrud.ru/attachment/result_22 (дата обращения 02.04.2024).
- 4. Seok J. Yoon, Hsing K. Lin, Gang Chen, Shinjea Yi, Jeawook Choi, Zhenhua R. Effect of Occupational Health and Safety Management System on Work-Related Accident Rate and Differences of Occupational Health and Safety Management System Awareness between Managers in South Korea's Construction

Industry // Safety and Health at Work, 2013. Volume 4, Issue 4, pp. 201-209 DOI: 10.1016/j.shaw.2013.10.002

- 5. Матюшева Н.В., Худякова В.М., Овчаренко М.С. Результаты анализа производственного травматизма в строительной отрасли // Молодежь и наука: шаг к успеху: Сборник научных статей 4-й Всероссийской научной конференции перспективных разработок молодых ученых. Том 4. Курск: Юго-Западный государственный университет, 2020. С. 181-185.
- 6. Hinze J. Construction safety // Safety Science, 2008. Volume 46, Issue 4. p. 565. DOI: 10.1016/j.ssci.2007.07.003
- 7. Morillas R.M., Rubio-Romero J.C., Fuertes A. A comparative analysis of occupational health and safety risk prevention practices in Sweden and Spain // Journal of Safety Research, 2013. Volume 47, pp. 57–65. DOI: 10.1016/j.jsr.2013.08.005
- 8. Yiu N.S.N., Chan D.W.M., Shan M., Sze N.N. Implementation of safety management system in managing con-struction projects: Benefits and obstacles // Safety Science, 2019. № 117, pp. 23-32. DOI: 10.24136/eq.2022.035.
- 9. Hanvold T.N., Kines P., Nykänen M., Thomée S., Holte K.A., Vuori J., Wærsted M., Veiersted K.B. Occupational safety and health among young workers in the nordic countries: a systematic literature review // Safety and health at work, 2019. Volume 10, Issue 1. pp. 3-20. DOI: 10.1016/j.shaw.2018.12.003
- 10. Katzer J., Szatkiewicz T. Effect of 3d printed spatial reinforcement on flexural characteristics of conventional mortar // Materials, 2020. № 13(14). p. 3133. DOI: 10.3390/ma13143133
- 11. Winge S., Albrechtsen E., Mostue B.A. Causal factors and connections in construction accidents // Safety science, 2019. Vol.112. pp.130-141. DOI: 10.1016/j.ssci.2018.10.015
- 12. Chen H., Hou C., Zhang L., Li Sh. Comparative study on the strands of research on the governance model of international occupational safety and

- health issues // Safety Science, 2020. Volume 122. p. 104513. DOI: 10.1016/j.ssci.2019.104513
- 13. Будин М.В., Беляев А.Н. Проблема травматизма в строительстве // E-Scio, 2020. № 5(44). URL: cyberleninka.ru/article/n/problema-travmatizma-v-stroitelstve-1 (дата обращения: 11.05.2024).
- 14. Jasni N.A., Nordin R. M., Ismail Z., Abdul Aziz N.A. Themes and factors of construction safety management for system dynamic model interactions. A systematic review // IOP Conference Series Earth and Environmental Science, 2019. Volume 385(1). P. 012055. DOI: 10.1088/1755-1315/385/1/012055.
- 15. Li P., Wang Q., Guo Z., Mei T., Li Q., Qiao S., Zuo W. Identifying falling-from-height hazards in building information models: a voxelization-based method // Journal of Construction Engineering and Management ASCE, 2022. Vol. 148. No. 2. DOI: 10.1061/(asce)co.1943-7862.0002236.
- 16. Verma A., Dhalmahapatra K., Maiti J. Forecasting occupational safety performance and mining text-based association rules for incident occurrences // Safety Science, 2023. Vol. 159. P. 106014. DOI: 10.1016/j.ssci.2022.106014.

References

- 1. Bakirov A.B., Karamova L.M., Karamova L.K., Vlasova N.V., Shapoval I.V., Basharova G.R. Medicina truda i e`kologiya cheloveka, 2024. No. 1. pp. 25-48.
- 2. Kontareva V.Yu., Belik S.N. XXI vek: itogi proshlogo i problemy` nastoyashhego plyus, 2023. Vol. 12, No. 4(64). pp. 250-258.
- 3. Rezul'taty monitoringa uslovij i ohrany truda v Rossijskoj Federacii v 2022 godu [Results of monitoring of labor conditions and safety in the Russian Federation in 2022]. URL: eisot.rosmintrud.ru/attachment/result_22 (accessed 02.04.2024).

- 4. Seok J. Yoon, Hsing K. Lin, Gang Chen, Shinjea Yi, Jeawook Choi, Zhenhua R. Safety and Health at Work, 2013. Volume 4, Issue 4, pp. 201-209 DOI: 10.1016/j.shaw.2013.10.002
- 5. Matyusheva N.V., Khudyakova V.M., Ovcharenko M.S. Molodezh' i nauka: shag k uspekhu: Sbornik nauchnyh statej 4-j Vserossijskoj nauchnoj konferencii perspektivnyh razrabotok molodyh uchenyh [Youth and science: a step to success: Collection of scientific articles of the 4th All-Russian scientific Conference of promising developments of young scientists]. Volume 4. Kursk: Southwestern State University, 2020. pp. 181-185.
- 6. Hinze J. Safety Science, 2008. Volume 46, Issue 4. p. 565. DOI: 10.1016/j.ssci.2007.07.003
- 7. Morillas R.M., Rubio-Romero J.C., Fuertes A. Journal of Safety Research, 2013. Volume 47, pp. 57–65. DOI: 10.1016/j.jsr.2013.08.005
- 8. Yiu N.S.N., Chan D.W.M., Shan M., Sze N.N. Safety Science, 2019. № 117, pp. 23-32. DOI: 10.24136/eq.2022.035.
- 9. Hanvold T.N., Kines P., Nykänen M., Thomée S., Holte K.A., Vuori J., Wærsted M., Veiersted K.B. Safety and Health at Work, 2019. Volume 10, Issue 1. pp. 3-20. DOI: 10.1016/j.shaw.2018.12.003
- 10. Katzer J., Szatkiewicz T. Materials, 2020. № 13(14). P. 3133. DOI: 10.3390/ma13143133
- 11. Winge S., Albrechtsen E., Mostue B.A. Safety science, 2019. Vol.112. pp.130-141. DOI: 10.1016/j.ssci.2018.10.015
- 12. Chen H., Hou C., Zhang L., Li Sh. Safety Science 2020, Volume 122. p. 104513. DOI: 10.1016/j.ssci.2019.104513
- 13. Budin M.V., Belyaev A.N. EScio, 2020. No.5 (44). URL: cyberleninka.ru/article/n/problema-travmatizma-v-stroitelstve-1. (date assessed: 05/11/2024).

- 14. Jasni N.A., Nordin R. M., Ismail Z., Abdul Aziz N.A. IOP Conference Series Earth and Environmental Science, 2019. Volume 385(1). P. 012055. DOI: 10.1088/1755-1315/385/1/012055.
- 15. Li P., Wang Q., Guo Z., Mei T., Li Q., Qiao S., Zuo W. Journal of Construction Engineering and Management, 2022. Vol. 148. No. 2. DOI: 10.1061/(asce)co.1943-7862.0002236.
- Verma A., Dhalmahapatra K., Maiti J. Safety Science, 2023. Vol. 159.P. 106014. DOI: 10.1016/j.ssci.2022.106014.

Дата поступления: 11.08.2024

Дата публикации: 19.09.2024