Экономико-математическая модель определения влияния факторов, характеризующих специфику демонтажных работ, на эксплуатационные затраты и продолжительность работы машин и механизмов

А.Н. Бирюков, И.М. Таутиев

Военный институт (инженерно-технический) Военной академии материально-технического обеспечения имени генерала армии А. В. Хрулёва, г. Санкт-Петербург

Авторами разработана Аннотация: статьи экономико-математическая модель определения влияния факторов, характеризующих специфику демонтажных работ, на эксплуатационные затраты и продолжительность работы машин и механизмов, научная новизна которой состоит в том, что, в отличие от существующих моделей, она учитывает нормативно-параметрический метод, регрессионную и ковариационную зависимости, и это позволяет оценить совокупность влияния факторов на эксплуатационные затраты и работы машин механизмов, продолжительность И описать эксплуатационных затрат и продолжительности работы машин и механизмов, а также сформировать объём инвестиций на эксплуатационные затраты машин и механизмов. экономико-математическая Ключевые слова: демонтажные работы, модель, эксплуатационные затраты, машины и механизмы.

Сущностью разработанной модели является формирование объема капитальных вложений на восстановление зданий и сооружений при ликвидации последствий чрезвычайных ситуаций в части производства демонтажных работ.

Состав затрат на эксплуатацию машин и механизмов при производстве демонтажных работ представлен на рис.1.

Для определения объема капитальных вложений на восстановление зданий и сооружений в составе модели разработана блок-схема расчёта машиноемкости машин и механизмов в зависимости от условий производства работ представленная на рис.2 [1].

Для прогнозирования последующих расчётов эксплуатационных затрат и машиноемкости машин и механизмов для производства демонтажных работ выявлены основные факторы, влияющие на них, которые представлены в табл.1 [2].

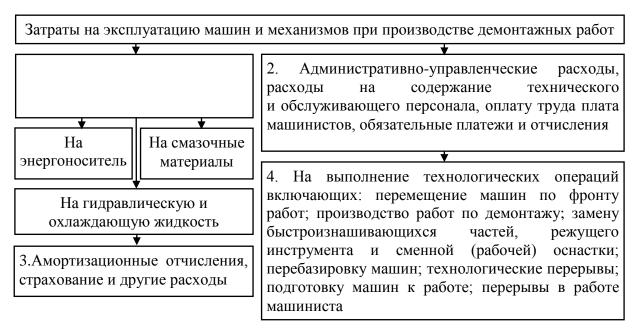


Рис. 1. - Состав затрат на эксплуатацию машин и механизмов при производстве демонтажных работ

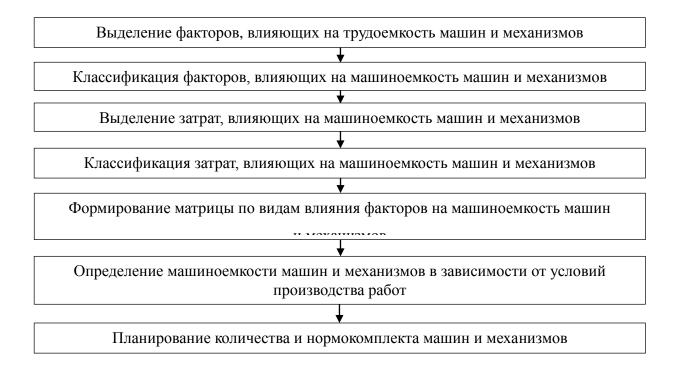
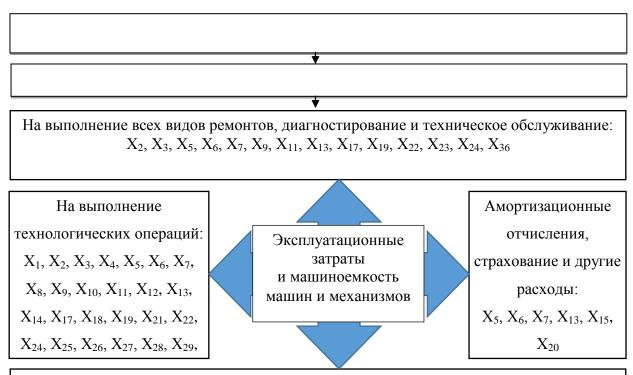



Таблица № 1

Основные факторы, влияющие на эксплуатационные затраты и машиноемкость демонтажных работ

Основные факторы, влияющие на эксплуатационные затраты и машиноемкость работ					
X_1 - объемно- планировочные и архит. параметры объекта	X ₁₃ - коэффициент на перебазировку машин	X ₂₅ – коэффициент на перерывы в работе машиниста			
X_2 - географическое положение объекта	X ₁₄ - коэффициент технологические перерывы	X_{26} – уровень подготовки машин к работе			
X ₃ – природно- климатические условия местности	X_{15} — стоимость страхования техники	X ₂₇ – показатель демонтируемости объекта			
X ₄ - наличие инженерных систем и их компоновка	 X₁₆ - уровень затрат на зарплату машинистов, технический и обслуживающий персонал 	X ₂₈ – показатель внутренней стесненности объекта			
X ₅ – обеспеченность трудовыми ресурсами (машинисты)	X ₁₇ - стоимость смазочных материалов	X_{29} – показатель внутриплощадочных проездов объекта			
X_6 - наличие и объем средств механизации	X_{18} - стоимость энергоносителя	X_{30} — показатель закрытости застройки			
X ₇ - наличие сложного технологического оборудования	X ₁₉ - стоимость гидравлической и охлаждающей жидкостей	X_{31} – показатель плотности застройки			
X ₈ - режим функционирования объекта	X ₂₀ – стоимость амортизационных отчислений	X ₃₂ – показатель стесненности по транспортным габаритам демонтажного механизма			
X ₉ – качество выполнения всех видов ремонтов, диагностирования и технического обслуживание	X ₂₁ – достаточность компоновки технической документации об элементах объекта	X ₃₃ – показатель стесненности использования демонтажных механизмов			
X ₁₀ — качество выполнения технологических операций	X ₂₂ – уровень износа техники	X ₃₄ – показатель необходимости мониторинга сохраняемых конструкций			
X ₁₁ – уровень замены быстроизнашивающихся частей, инструмента	X ₂₃ – уровень квалификации технического и обслуживающего персонала	X ₃₅ – показатель непрерывности процесса производства работ			
X ₁₂ - коэффициент перемещения машин по фронту работ	X_{24} – наличие средств автоматизации и индикации	X ₃₆ – коэффициент, характеризующий удаленность от баз снабжения и затраты на транспортировку			

Кроме того, для последующих расчётов выделены виды затрат на эксплуатацию машин и механизмов и факторы, влияющие на машиноемкость машин и механизмов, которые представлены на рис.3 [3].

Административно-управленческие расходы, расходы на содержание технического и обслуживающего персонала, оплату труда плата машинистов, необходимые обязательные платежи и отчисления:

 $X_2, X_5, X_6, X_7, X_8, X_{10}, X_{16}, X_{24}, X_{36}$

Далее основная задача состоит в выборе факторов, включаемых в корреляционную модель для того чтобы ввести в анализ все основные факторы, влияющие на уровень изучаемого явления. Вместе с тем введение в модель большого числа факторов нецелесообразно, правильнее отобрать только сравнительно небольшое число основных факторов, находящихся предположительно в корреляционной связи с выбранным функциональным показателем, потому, что чрезмерное увеличение числа факторов может не прояснить, а, наоборот, сгладить картину множественных связей [4,5].

В целях разработки многофакторных моделей затрат на эксплуатацию машин и механизмов была использована информация из базы объектов инфраструктуры восстановленных в ходе ликвидации последствий чрезвычайных ситуаций. Кроме того, определены расчетные значения эксплуатационных затрат, установленных по калькуляциям в соответствии с нормативами, имеющимися для строительной отрасли.

Существенного уменьшения машиноемкости демонтажных работ можно добиться с помощью внедрения методов проектирования оптимизационных нормокомплектов машин и механизмов.

Основные факторы по функциональному назначению группируются по оказанию влияния на: выполнение всех видов ремонтов, диагностирование и техническое обслуживание; выполнение технологических операций; амортизационные отчисления, страхование И другие расходы; административно-управленческие расходы, расходы на содержание технического и обслуживающего персонала, оплату труда плата машинистов, необходимые обязательные платежи И отчисления. Таким образом, представлены все основные факторы, влияние оказывающие на эксплуатационные затраты и машиноемкость демонтажных работ [5,6].

Каждая группа факторов в различной степени влияет на уровень эксплуатационных затрат, а влияние факторов различно для каждой составляющей текущих затрат. Налоги, сборы и обязательные страховые взносы являются обязательными денежными платежами государству со стороны организаций. Что касается налогов и сборов, плательщик чаще всего взаимодействует с налоговой инспекцией - территориальным подразделением Федеральной налоговой службы.

В соответствии с нормативными документами, в бюджет расходов на персонал могут входить 3 основные группы факторов: оплата труда

работников (машинистов); социальные выплаты и иные расходы, не имеющие отношения к фонду оплаты труда и социальным выплатам.

Выполнение технологических операций — это одна из основных затратных операций включающая выполнение перемещений машин по фронту работ; производство работ по демонтажу; замену быстроизнашивающихся частей, режущего инструмента и сменной (рабочей) оснастки; перебазировку машин; технологические перерывы; подготовку машин к работе; перерывы в работе машиниста и т.д.

Проведено исследование показателей совокупности исходных данных (табл. 2) зависимости эксплуатационных затрат на машины и механизмы от факторов-аргументов, влияющих на производство демонтажных работ (x_1 , x_{27} , x_{31} , x_{33} , x_{34} , x_{35}) описываются линейной многофакторной функцией вида [3]:

$$\widehat{y} = b_0 + b_1 x_1 + b_{27} x_{27} + b_{31} x_{31} + b_{33} x_{33} + b_{34} x_{34} + b_{35} x_{35}. \quad (1)$$

Таблица № 2

Совокупность исходных данных для анализа влияния специфики демонтажных работ на эксплуатационные затраты и продолжительность работы машин и механизмов

Номер	X ₁ ,	X_{27} ,	X_{31} ,	X ₃₃ ,	X ₃₄ ,	X ₃₅ ,	Y,
варианта	кв.м.	%	%	%	%	%	млн.руб.
1	2	3	4	5	6	7	8
1	6433	17	75	73	64	0,33	208,9
2	9847	51	75	66	34	0,50	320,5
3	10755	23	70	82	58	0,50	530,4
4	8539	60	51	84	32	0,50	492,5
5	7595	22	59	65	59	0,33	541,9
6	9444	26	75	68	61	0,33	326,4
7	26512	12	77	61	74	0,33	1330,5
8	15938	44	44	83	41	0,33	961,7
9	15454	37	53	75	52	0,25	1021,5
10	19178	42	54	76	35	1,00	560,6

Корреляционно-регрессионные модели [6] позволяют определять количественное влияние и характер воздействия основных факторов, характеризующих технико-экономические параметры, на формирование эксплуатационных затрат на машины и механизмы. Результаты факторного анализа санкционируют выявление и научное обоснование технико-экономических характеристик и параметров, необходимых и достаточных для расчета эксплуатационных затрат на машины и механизмы на стадии технико-экономического обоснования проектов организации демонтажа или реконструкции объектов военной инфраструктуры силового компонента государства.

Нормативно-параметрические методы включают в себя: метод приведения цены; агрегатный метод и метод регрессионного анализа. Данные методы используются и при установлении цен на строительную продукцию [7]. При этом учитываются отраслевые особенности строительства, а как частный случай - производство демонтажных работ и специфика объектов военной инфраструктуры, как объектов государственной закупки.

Применение нормативно-параметрических методов существенно облегчает процесс расчета эксплуатационных затрат основе использования математических методов. Эксплуатационные затраты на вновь разработанные проекты реконструкции или демонтажа объектов военной инфраструктуры могут быть определены в результате сопоставления технико-экономических параметров, ИΧ инженерных характеристик, климатических условий района застройки с аналогичными показателями базовых объектов. Для установления количественных соотношений между эксплуатационными затратами и параметрами, и характеристиками зданий, техническими параметрами демонтируемых конструктивных элементов могут быть применены различные математические методы (корреляционный, агрегатный, рациональной функции, сложного индекса качества, балльный и

Их необходимость др.). использование исключает детальном калькулировании, снижает трудоемкость расчетов и уменьшает вероятность ошибок величины. Особенность при определении ИХ нормативнопараметрических методов заключается в их использовании не только для определения базовых зависимостей габаритных характеристик и параметров, но и для определения поправок к произведенным расчетам.

Величина эксплуатационных затрат на машины и механизмы при производстве демонтажных работ формируется под влиянием ряда факторов, основными ИЗ которых являются: x_1 - объемно-планировочные архитектурные параметры объекта, кв.м.; х₂₇ - показатель демонтируемости объекта, %; x_{31} - показатель плотности застройки, %; x_{33} - показатель стесненности использования демонтажных механизмов, %; x_{34} - показатель необходимости мониторинга сохраняемых конструкций, %; х₃₅ – показатель непрерывности процесса производства демонтажных работ, %. Основные эксплуатационных параметры модели зависимости затрат и машиноемкости машин и механизмов от варианта производства работ представлены в табл.3 [8].

Таблица № 3 Параметры модели зависимости эксплуатационных затрат и машиноемкости машин и механизмов от варианта производства демонтажных работ

Обозначение	Параметры модели						
коэффициентов регрессии	b_0	b_1	B ₂₇	B_{31}	B_{33}	B ₃₄	B ₃₅
Значения коэффициентов	0	0,04	2,85	-1,20	-2,16	2,73	29,66
регрессии							

Для количественной оценки степени влияния перечисленных факторов на уровень годовых эксплуатационных затрат на машины и механизмы была построена ковариационная модель вида [9]:

$$\hat{y} = 0.04x_1 + 2.85x_{27} - 1.20x_{31} - 2.16x_{33} + 2.73x_{34} + 29.66x_{35}$$
. (2)

Коэффициенты регрессии показывают, что увеличение объемнопланировочных и архитектурных параметров объектов на 1 м² влечет увеличение затрат на 0,04 млн. руб.; увеличение демонтируемого объема на объекте на 1 % оказывает влияние на рост эксплуатационных затрат в объеме 2,85 млн. руб.; снижение показателя плотности застройки на 1 % влечет за собой снижение эксплуатационных затрат на машины и механизмы на руб.; снижение показателя 1,20 млн. стесненности использования демонтажных механизмов на 1 % влечет снижение затрат на 2,16 млн. руб.; рост показателя необходимости мониторинга сохраняемых конструкций на 1 % приведет к увеличению затрат на 2,73 млн. руб.; рост показателя 1 % непрерывности процесса производства демонтажных работ на увеличивает эксплуатационные затраты на 29,66 млн. руб.

Расчетное значение дисперсионного отношения Фишера $F_{\text{расч.}}$ =46,72 с 6 и 73 степенями свободы значительно превосходит табличное $F_{\text{табл.}}$ =2,21 при 95% уровне значимости, что позволяет сделать вывод об адекватности построенной модели исследуемому процессу формирования затрат и, следовательно, делает корректным ее использование в расчете эксплуатационных затрат. Соответственно, влияние факторов, заложенных в модель, на расчет эксплуатационных затрат существенно [10].

Этот же вывод подтверждает величина множественного коэффициента корреляции (R=0,971), показывающего очень высокую тесноту линейной связи факторов с изучаемым показателем. Квадрат множественного коэффициента корреляции, выраженный в процентах, показывает, что в рассматриваемом случае на 94,41% изменения затрат объясняются соответствующими изменениями учтенных в модели факторов.

Значимость каждого включенного в модель фактора оценим с помощью квантилей распределения Стьюдента. Для всех коэффициентов регрессии, квантили распределения Стьюдента составили [11]: t_1^p =0,003,

 t_{27}^p =2,85, t_{31}^p =-1,20, t_{33}^p =-2,16, t_{34}^p =2,7, t_{35}^p = 29,66 и оказались выше табличного значения t=1,99 при 95% уровне значимости, кроме факторов x_1 , x_{31} . Несмотря на это, исключать данные факторы из модели нецелесообразно, учитывая значимость их влияния на производство демонтажных работ.

Непосредственный расчет эксплуатационных затрат осуществляется путем использования различных характеристик регрессионной модели. Чаще других в практических расчетах используются частные коэффициенты абсолютного роста и частные коэффициенты эластичности, численные значения коэффициентов эластичности приведены в табл.4 [12]:

$$E_{k} = \frac{\partial Y}{\partial X_{n}} / \frac{\overline{Y}}{\overline{X}_{n}}$$
 (3)

Таблица № 4 Коэффициенты эластичности эксплуатационных затрат

№пп.	Факторы	Коэффициенты
		эластичности E_k
1.	Объемно-планировочные и архитектурные параметры	
	объекта, м ²	0,9725
2.	Показатель демонтируемости объекта, %	0,1976
3.	Показатель плотности застройки, %	-0,147
4.	Показатель стесненности использования демонтажных	
	механизмов, %	-0,301
5.	Показатель необходимости мониторинга сохраняемых	
	конструкций, %	0,2463
6.	Показатель непрерывности процесса производства	0,032
	демонтажных работ, %.	

Коэффициенты эластичности эксплуатационных затрат показывают, что увеличение факторов, представленных в табл.3 [13], влечёт за собой увеличение или снижение соответствующих затрат.

Общий объем эксплуатационных затрат на машины и механизмы, представленный в данной модели, как сумма затрат на эксплуатацию по видам, состоящей из 4 блоков, рассчитывается по формуле [13]:

$$\Gamma$$
ЭЗ = Σ блок 1 + Σ блок 2 + Σ блок 3 + Σ блок 4 (4)

$$\Gamma \ni 3 = \sum_{m=1}^{14} \sum_{n=1}^{N} x_{mn} + \sum_{m=1}^{9} \sum_{n=1}^{N} x_{mn} + \sum_{m=1}^{6} \sum_{n=1}^{N} x_{mn} + \sum_{m=1}^{31} \sum_{n=1}^{N} x_{mn}$$
(5)

где: - $\sum_{m=1}^{44} \sum_{n=1}^{N} x_{mn}$ - сумма эксплуатационных затрат по 1 блоку матрицы;

 $\sum_{m=1}^{9} \sum_{n=1}^{N} x_{mn}$ - сумма эксплуатационных затрат по 2 блоку матрицы;

 $\sum_{m=1}^{6} \sum_{n=1}^{N} x_{mn}$ - сумма эксплуатационных затрат по 3 блоку матрицы;

 $\sum_{m=81}^{31} \sum_{n=1}^{N} x_{mn}$ - сумма эксплуатационных затрат по 4 блоку матрицы.

Таким образом, авторами разработана экономико-математическая модель определения влияния факторов, характеризующих специфику демонтажных работ, на эксплуатационные затраты и продолжительность работы машин и механизмов, научная новизна которой состоит в том, что, в отличие от существующих, она учитывает нормативно-параметрический метод, регрессионную и ковариационную зависимости, что позволяет оценить совокупность влияния факторов на эксплуатационные затраты и продолжительность работы машин и механизмов, описать порядок расчета эксплуатационных затрат и продолжительности работы машин и механизмов и сформировать объём инвестиций на эксплуатационные затраты машин и механизмов.

Литература

1. Батаев Д.С. Материалы и технологии для ремонтновосстановительных работ в строительстве – Дис. ...док. техн. наук. М, 2001. 155 с.

- 2. Белицкий Б.Ф. Технология и механизация строительного производства. Ростов н/Д: ФЕНИКС, 2004. 752 с.
- 3. Венецкий И.Г., Венецкая В.И. Основные математико-статистические понятия и формулы в экономическом анализе. М. Статистика. 1979. 228 с.
- 4. Олейник П.П., Бродский В.И., Кузьмина Т.К., Чередниченко Н.Д. Теория, методы и формы организации строительного производства. В 2-х ч. Ч. 2. М.: МГСУ, 2020. 334 с.
- 5. Бирюков А.Н., Таутиев И.М. Анализ современного состояния процесса выбора средств механизации при проведении демонтажных работ/В сборнике: Современные проблемы менеджмента в строительстве. Материалы Всероссийской научно-практической конференции. Санкт-Петербург, 2022. С.246-254.
- 6. Бирюков А.Н., Таутиев И.М. Основные методы выбора средств механизации при проведении демонтажных работ/В сборнике: Технология строительного производства. Материалы Всероссийской молодёжной научно-практической конференции, посвященной 190-летию Санкт-Петербургского государственного архитектурно-строительного университета (ЛИСИ СПбГАСУ). Санкт-Петербург, 2022. С. 14-20.
- 7. Канторович Л. В., Горстко А. Б. Математическое оптимальное программирование в экономике. М.: Знание, 1968. 96 с.
- 8. Кудрявцев Е.М. Комплексная механизация и автоматизация строительства. М.: Стройиздат, 1989. 246 с.
- 9. Морозов А.С., Тонких Г.П., Демидов К.А. Рекомендации по способам разборки поврежденных зданий и сооружений. М.: 26 ЦНИИ МО РФ, 2007. 127 с.
- 10. Побегайлов О.А. Инновационно-ориентированный подход к использованию городской земли// Инженерный вестник Дона, 2013. № 2. URL: ivdon.ru/ru/magazine/archive/n2y2013/1721.

- 11. Xiao M, Ledezma M., Wang J. Reduced-Scale Shake Table Testing of Seismic Behaviors of Slurry Cutoff Walls // Journal of Performance of Constructed Facilities, 2016. Volume 30. Issue: 3. Article Number: 04015057
- 12. Kazakov, Yu. Fast assembly of quality suspended ventilated facades // Architecture and Engineering. 2017. Vol. 2. No 1. P. 32-40.
- 13. Тухарели А.В., Чередниченко Т.Ф., Снегирев Д.П. Прогрессивные строительные технологии в стеснённых условиях городских территорий // Инженерный вестник Дона. 2018. №1. URL: ivdon.ru/ru/magazine/archive/n4y2018/4526.

References

- 1. Bataev D.S. Materialy` i texnologii dlya remontno-vosstanovitel`ny`x rabot v stroitel`stve [Materials and technologies for repair and restoration work in construction] Dis. dok. texn. nauk. M, 2001. 155 p.
- 2. Beliczkij B.F. Texnologiya i mexanizaciya stroitel`nogo proizvodstva. [Technology and mechanization of construction production] Rostov-na-Donu: FENIKS, 2004. 752 p.
- 3. Veneczkij I.G., Veneczkaya V.I. Osnovny'e matematiko-statisticheskie ponyatiya i formuly' v e'konomicheskom analize [Basic mathematical and statistical concepts and formulas in economic analysis]. M. Statistika. 1979. 228 p.
- 4. Olejnik P.P., Brodskij V.I., Kuz`mina T.K., Cherednichenko N.D. Teoriya, metody` i formy` organizacii stroitel`nogo proizvodstva [Theory, methods and forms of organization of construction production]. V 2-x ch. Ch. 2. M.: MGSU, 2020. 334 p.
- 5. Biryukov A.N., Tautiev I.M. Sovremenny'e problemy' menedzhmenta v stroitel'stve. Sankt-Peterburg, 2022. pp.246-254.
- 6. Biryukov A.N., Tautiev I.M. Texnologiya stroitel`nogo proizvodstva. LISI SPbGASU, Sankt-Peterburg, 2022. pp.14-20.

- 7. Kantorovich L.V., Gorstko A. B. Matematicheskoe optimal`noe programmirovanie v e`konomike [Mathematical optimal programming in economics]. M.: Znanie, 1968. 96 p.
- 8. Kudryavcev E.M. Kompleksnaya mexanizaciya i avtomatizaciya stroitel`stva [Mathematical optimal programming in economics]. M.: Strojizdat, 1989. 246 p.
- 9. Morozov A.S., Tonkix G.P., Demidov K.A. Rekomendacii po sposobam razborki povrezhdenny`x zdanij i sooruzhenij [Mathematical optimal programming in economics]. M.: 26 CzNII MO RF, 2007. 127 p.
- 10. Pobegajlov O.A. Inzhenernyj vestnik Dona. 2013. № 2. URL: ivdon.ru/ru/magazine/archive/n2y2013/1721.
- 11. Xiao M, Ledezma M., Wang J. Reduced-Scale Shake Table Testing of Seismic Behaviors of Slurry Cutoff Walls. 2016. Volume 30. Issue: 3. Article Number: 04015057.
- 12. Kazakov, Yu. Architecture and Engineering. 2017. Vol. 2. No 1. P. 32-40.
- 13. Tuxareli A.V., Cherednichenko T.F., Snegirev D.P. Inzhenernyj vestnik Dona. 2018. №1. URL: ivdon.ru/ru/magazine/archive/n4y2018/4526.