Анализ функциональной полноты устройств контроля здоровья

Д.М. Жевакин, С.Н. Широбокова, О.Н. Сериков, М.Е. Диков, Т.И. Перекрестова

Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова, Новочеркасск

Аннотация: В современном мире контроль здоровья является важнейшим элементом повседневной жизни. В статье выделен перечень функциональных возможностей различных устройств (умных часов, фитнес-браслетов) и описаны результаты формализованного анализа функциональной полноты устройств контроля здоровья. На примере двух различных наборов требований пользователя в исследование включены две условные системы, по степени схожести с которыми можно судить насколько анализируемые устройства подходят для данного пользователя.

Ключевые слова: устройства контроля здоровья, фитнес-браслет, сравнительный анализ по функциональной полноте, измерения давления, пульса, ЭКГ, контроль тренировок, анализ соответствия требований пользователя к устройствам, схожесть устройств.

Высокий темп современной жизни не всегда позволяет следить за состоянием здоровья. На рынке присутствует множество устройств, позволяющих отслеживать различные показатели здоровья и физических нагрузок (примеры устройств описаны в источниках [1-4]). Сравнение по критерию функциональной полноты, как отмечается в работе [5-7], позволяет количественно оценить соответствие выбранных для сравнения аппаратных продуктов требованиям пользователя для рационального выбора (примеры использования методики для других предметных областей в [8,9]).

С использованием инструментария [10] проведем анализ шести представленных на рынке умных часов (таблица 1), с возможностью измерения сердечных и физических показателей. Для исследования использованы материалы сайтов фирм разработчиков (документация, руководства, описания функционала устройств). Основные функции, которые могут выполнять данные устройства, отображены в таблице 2.

Введем следующие обозначения: $S = \{S_i\}$ (i = 1,...,6) — множество сравниваемых устройств по контролю здоровья; $F = \{F_i\}$ (j = 1,...,28) —

множество функций контроля здоровья, реализуемых устройствами $\{S_i\}$; $X = \{x_{ij}\}$ (i=1,...6; j=1,...,28) — матрица сравнения по функциональной полноте, ее элементы: $x_{ij} = \begin{cases} 1, \text{ если } j - \text{я функция реализуется } i - \text{ым устройством} \\ 0, \text{ если не реализуется.} \end{cases}$

Таблица №1 Рассматриваемые устройства

Код	Название устройства	Источник информации (ссылка)					
S_1	CardioQVARK	http://cardioqvark.ru/?scroll=about					
S_2	GSMIN WP60	https://gsmin.ru/catalog/krasota_i_zdorove/umnye					
		_chasy_i_braslety/umnye_chasy_s_izmereniem_da					
		vleniya/chasy gsmin wp60 s izmereniem davlen					
		iya_pulsa_i_ekg_chernyy/					
S_3	HerzBand Classic ECG	https://herz.band/fitness-bracelets/herzband-					
		classic-series/HerzBand-Classic-ECG					
S_4	Sigma iD.Life	https://www.sigmasport.com/ru/					
S_5	BEURER PM45	https://www.beurer-					
		russia.ru/i/product_f/207_1.pdf					
S_6	No.1 DT28	https://smartchasy.com/obzory/obzor-smart-					
		chasov-no-1-dt28-stoit-pokupat-ili-net/					
S_7, S_8	Это условные систем	ы, отражающие разные наборы требований					
	пользователя к функционалу (будут рассмотрены ниже).						

Таблица №2 Описание функционала анализируемых устройств

No	Наименование функции	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8
функции									
1	2	3	4	5	6	7	8	9	10
F_1	Измерение частоты сердечных	1	1	1	1	1	1	1	0
	сокращений								
F_2	Измерение средней частоты	1	1	1	1	1	1	1	0
	сердечных сокращений								
F_3	Измерение давления	0	0	1	0	0	1	1	1
F_4	Запись ЭКГ	1	1	1	0	1	1	1	0
F_5	Измерение пульса	0	1	1	0	1	1	1	1
F_6	Контроль глюкозы	1	0	0	0	0	0	1	0
F_7	Учет времени тренировок	0	0	0	1	0	0	0	1
F_8	Мониторинг сна	0	1	1	0	0	1	0	1
F_9	Измерение текущей скорости	0	0	0	1	0	0	0	1

1100donmenne 140midbi 2	Продолжение таблицы	2
-------------------------	---------------------	---

	продолжение таолице						•		
1	2	3	4	5	6	7	8	9	10
F_{10}	Наличие шагомера	0	1	1	1	0	0	0	1
F_{11}	Измерение общего пробега	0	1	0	1	0	1	0	1
F_{12}	Счетчик калорий	0	1	1	1	0	1	0	0
F_{13}	Расход энергии	0	0	0	0	1	0	0	0
F_{14}	Объем вдыхаемого кислорода	0	0	0	0	1	1	0	0
F_{15}	Возможность настройки индивидуальных	0	1	1	0	0	0	1	1
	показателей для измерения давления								
F_{16}	Настройки роста	0	0	0	0	1	0	0	0
F_{17}	Настройки веса	0	1	0	0	1	0	0	0
F_{18}	Настройки возраста	0	1	0	0	1	0	0	0
F_{19}	Уведомление о звонках	0	1	1	0	0	1	1	1
F_{20}	Уведомление о SMS	0	1	1	0	0	1	1	1
F_{21}	Наличие приложения	1	1	1	0	0	1	1	1
F_{22}	Запись результатов измерений в приложении	1	1	1	0	0	0	1	1
F_{23}	Передача данных врачу	1	0	0	0	0	0	0	0
F_{24}	Отсутствие дополнительных приспособлений	1	1	1	1	0	1	1	1
F_{25}	Защита от влаги	0	1	1	0	0	1	0	1
F_{26}	Отображение времени	0	0	1	1	1	1	0	1
F_{27}	Работа в режиме «секундомер», «таймер»	0	0	1	0	1	1	0	1
F_{28}	Измерение общего времени тренировок	0	1	0	1	0	1	0	1

Получим логические матрицы отношения поглощения (включения) путем преобразования матриц $P_{ik}^{(01)}$, G_{ik} , H_{ik} при пороговых значениях $\varepsilon_p = 10$; $\varepsilon_g = 0.70 \ \varepsilon_h = 0.70$ соответственно [5-6]:

$$P_o = \left\{p_{ik}^{\,o}\right\}\!, \ G_o = \left\{g_{ik}^{\,o}\right\}\!, \ H_o = \left\{h_{ik}^{\,o}\right\} \ (i,k \in \overline{1,n}) \ , \ \ p_{ik}^{\,o} = \begin{cases} 1, \text{если} \, P_{ik}^{(01)} \leq \varepsilon_p \ \text{и} \ i \neq k; \\ 0, \text{если} \, P_{ik}^{(01)} > \varepsilon_p \ \text{или} \ i = k; \end{cases}$$

$$g_{ik}^{o} = \begin{cases} 1, \text{если } g_{ik} \geq \varepsilon_g \text{ и } i \neq k; \\ 0, \text{если } g_{ik} < \varepsilon_g \text{ или } i = k; \end{cases} h_{ik}^{o} = \begin{cases} 1, \text{если } h_{ik} \geq \varepsilon_h \text{ и } i \neq k; \\ 0, \text{если } h_{ik} < \varepsilon_h \text{ или } i = k; \end{cases}$$

где ε_p , ε_g , ε_h — выбранные граничные значения. При ε_p = 10; ε_g = 0,70 ε_h = 0,70 получаем следующий вид матриц:

Построенные по матрицам P_0 , G_0 и H_0 графы наглядно показывают различия в функциональных возможностях исследуемых устройств. По графу превосходства (рис. 2a), видно, какие из сравниваемых устройств и насколько превосходят друг друга. При пороговом значении $\varepsilon_p = 10$, устройства S_2 и S_3 обладают наибольшей функциональной полнотой, превосходя устройства S_1 , S_4 и S_5 . Устройство S_6 превосходит устройство S_1 и S_4 , а устройства S_2 , S_3 и S_6 не имеют взаимного превосходства.

Насколько исследуемые устройства схожи по функционалу можно оценить по матрице $G = \{g_{ik}\}$. Граф подобия между сравниваемыми устройствами (рис. 2б) построен по матрице G_0 для порогового значения $\varepsilon_g = 0,70$. Граф иллюстрирует, что устройства S_2 , S_3 , S_6 имеют наиболее высокую степень подобия. Устройства S_2 и S_3 подобны друг другу на 70%, а S_3 и S_6 подобны друг другу на 73,68%. Степень подобия между собой остальных устройств – менее 70%, поэтому они в графе не имеют взаимных связей.

На основе матрицы H_0 построен граф поглощения (рис. 2в), для порогового значения ε_h =0.70. Из рисунка видно: устройства S_2 , S_3 и S_6 имеют взаимное поглощение, а также устройства S_2 и S_3 поглощают устройство S_1 .

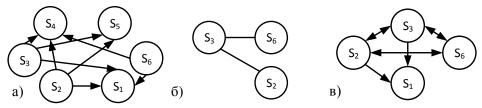


Рис. 2. – Граф превосходства при $\varepsilon_p = 10$ (а), граф подобия при $\varepsilon_g = 0.70$ (б) и граф поглощения при $\varepsilon_h = 0.70$ (в)

Кроме сравнения функционала устройств между собой пользователю важно определить, какие из них позволяют в наибольшей степени решить его задачи. Чтобы подобрать такие устройства необходимо провести сравнительный анализ с «условным» устройством по контролю здоровья. Для этого условного устройства пользователь, исходя из условий использования и типов необходимых приложений, формирует список предпочтительных функций [5-6]. Допустим, что пользователем выделены в качестве предпочтительных функции с упором на контроль здоровья для прибора S_7 или с упором на занятия спортом для прибора S_8 (таблица 2, колонки 9,10).

В результате перерасчета матриц $P_{ik}^{(01)}$, G_{ik} , H_{ik} с учетом добавления условных систем S_7 и S_8 и их преобразования в логические матрицы отношения поглощения (включения) для пороговых значений $\varepsilon_p = 8$; $\varepsilon_g = 0,60$; $\varepsilon_h = 0,80$ соответственно, графы, построенные на их основе, примут вид, как на рис. 3. На графе превосходства (рис. 3а, при $\varepsilon_p = 8$) видно, что устройства S_2 , S_3 , S_8 обладают наибольшей функциональной полнотой, превосходя устройства S_1 , S_4 , S_5 , S_7 . Устройство S_6 превосходит устройства S_1 , S_4 и S_5 . Устройства S_5 и S_7 превосходят устройство S_4 , а устройства S_2 , S_3 и S_8 не имеют взаимного превосходства. Граф подобия между сравниваемыми устройствами (рис. 3б), построенный по матрице G_0 при $\varepsilon_g = 0,60$,

иллюстрирует, что группа из пяти устройств имеет более высокую степень подобия: S_2 , S_3 , S_6 , S_7 , S_8 . Устройства S_2 и S_3 подобны друг другу на 70%, устройства S_3 и S_7 на 61,111%, устройства S_3 и S_8 на 61,905%, а также устройства S_3 и S_6 подобны друг другу на 73,68%. Вершины графа, соответствующие остальным устройствам, не имеют в графе взаимных связей, поскольку подобны между собой менее чем на 60%. Из рис. Зв видно: устройства S_2 , S_3 , S_6 и S_8 имеют взаимное поглощение, а также устройства S_2 , S_3 и S_6 поглощают устройство S_7 , а устройство S_7 поглощает устройство S_1 .

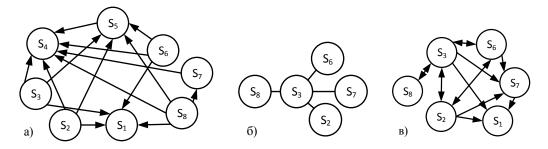


Рис. 3. — Граф превосходства при $\varepsilon_p = 8$ (а), граф подобия по реализуемым функциям при $\varepsilon_g = 0,60$ (б), граф поглощения при $\varepsilon_h = 0,80$ (в)

В результате применения рассмотренной методики еще на стадии предварительного анализа можно исключить из дальнейшего рассмотрения устройства по отслеживанию здоровья, в которых не реализуются нужные пользователю функции по контролю здоровья. Пользователю предоставляется возможность количественно оценить степень соответствия устройства его требованиям к функционалу, сформировать группу устройств, имеющих схожую функциональную полноту. Далее он может сопоставить их стоимость, другие характеристики и сделать окончательный выбор.

Литература

1. Синютин С.А., Леонова А.В. Интегрированные в одежду электроды для регистрации ЭКГ // Инженерный вестник Дона. 2019. №1. URL: ivdon.ru/ru/magazine/archive/n4y2013/2029.

- 2. Wooseong Jeong, Jinkyu Song, Jihoon Bae, Koteeswara Reddy Nandanapalli, Sungwon Lee. Breathable Nanomesh Humidity Sensor for Real-Time Skin Humidity Monitoring // American Chemical Society. 2019. URL: doi.org/10.1021/acsami.9b17584.
- 3. Yuhao Liu, Matt Pharr, Giovanni Antonio Salvatore. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring // American Chemical Society. 2017. URL: doi.org/10.1021/acsnano.7b04898.
- 4. Никитин П.В., Мурадянц А.А., Шостак Н.А. Мобильное здравоохранение возможности, проблемы, перспективы // Клиницист. 2015. №4. С. 13-21.
- 5. Хубаев Г.Н. Сравнение сложных программных систем по критерию функциональной полноты // Программные продукты и системы (SOFTWARE&SYSTEMS). 1998. №2. С. 6-9.
- 6. Хубаев Г.Н. Сегментирование рынка на основе различий в требованиях покупателей к функциональной полноте товара: универсальная методика (на примере программных продуктов) // Наука и бизнес: пути развития. 2019. № 3 (93). С. 219-224.
- 7. Щербаков С.М. Метод анализа сложных систем по критерию функциональной полноты: расширение и адаптация // Системное управление. 2010. №2(8). URL: sisupr.mrsu.ru/wp-content/uploads/2015/02/SCHERBAKOV_1.pdf
- 8. Широбокова С.Н., Сериков О.Н. Формализованный анализ функциональной полноты систем видеоаналитики // Инженерный вестник Дона. 2019. №1. URL: ivdon.ru/ru/magazine/archive/n1y2019/5465.
- 9. Мирошниченко И.И., Щербаков С.М., Клименко А.А., Самарская М.В. Сравнительная оценка функциональной полноты программных средств автоматизированного формирования учебно-методической документации // Прикладная информатика. 2019. Т.14. № 6 (84). С. 5-12.

10. Хубаев Г. Н., Щербаков С. М., Аручиди Н. А. ПС анализа сложных систем по критерию функциональной полноты «Ireland» // Свидетельство об официальной регистрации программы для ЭВМ RUS №2009615296. М.: РОСПАТЕНТ, 2009.

References

- 1. Sinyutin S.A., Leonova A.V. Inzhenernyj vestnik Dona, 2013, №4. URL: ivdon.ru/ru/magazine/archive/n4y2013/2029.
- 2. Wooseong Jeong, Jinkyu Song, Jihoon Bae, Koteeswara Reddy Nandanapalli, Sungwon Lee. American Chemical Society 2019. URL: doi.org/10.1021/acsami.9b17584.
- 3. Yuhao Liu, Matt Pharr, Giovanni Antonio Salvatore. American Chemical Society. 2017. URL: doi.org/10.1021/acsnano.7b04898.
 - 4. Nikitin P.V., Muradyan A.A., Shostak N.A. Clinician. 2015. №4. pp. 13-21.
- 5. Khubaev G.N. Programmnye produkty i sistemy (Software&Systems). 1998. №2. pp. 6-9.
 - 6. Khubaev G.N. Nauka i biznes: puti razvitiya.2019. № 3 (93). pp. 219-224.
- 7. Shcherbakov S.M. Sistemnoe upravlenie. 2010. №2 (8). URL: sisupr.mrsu.ru/wp-content/uploads/2015/02/SCHERBAKOV_1.pdf.
- 8. Shirobokova S.N., Serikov O.N. Inzhenernyj vestnik Dona, 2019. № 1. URL: ivdon.ru/ru/magazine/archive/n1y2019/5465.
- 9. Miroshnichenko I.I., Shcherbakov S.M., Klymenko A.A., Samarskaya M.V. Prikladnaya informatika. 2019. V.14. № 6 (84). pp. 5-12.
- 10. Khubaev G.N., Shcherbakov S.M., Aruchidi N.A. Svidetel'stvo ob oficial'noj registracii programmy dlya EVM RUS №2009615296. 2009.