Устойчивое строительство зданий

С. Г. Шеина, Р.В. Балашев, Г.А. Живоглядов, Р.Д. Шахиев

Донской государственный технический университет, Ростов-на-Дону

Аннотация: В данной публикации проведен анализ современных экологических технологий в области устойчивого строительства, рассматриваются особенности развития современного зеленого строительства, актуальные российские и международные тенденции в сфере устойчивого «зеленого» строительства, инструменты стимулирования и поддержки проектов, признанных соответствующими требованиям устойчивости.

Ключевые слова: строительство, проектирование, эксплуатация, экология, экологическое здание, энергоресурс, энергоэффективность, энергосбережение, устойчивость здания, сертификация здания.

Строительство является одним из главных факторов загрязнения окружающей среды, создавая сотни миллионов тонн парниковых газов и строительных отходов. Все дороже обходится эксплуатация построенных объектов: увеличивается стоимость энергии, повышаются требования к комфорту и удобству, ужесточаются стандарты экологической безопасности. Эти и многие другие факторы способствуют активному росту глобального интереса к устойчивым методам и технологиям строительства, способным принести экономическую выгоду при одновременном удовлетворении высоких социальных и экологических требований.

Всемирный совет по экологическому строительству (The World Green Building Council) определяет устойчивое строительство, как вид строительства зданий и сооружений, при котором используются новейшие зеленые технологии, позволяющие свести к минимуму негативное воздействие на окружающую среду [1].

При строительстве объектов устойчивого «зеленого» строительства и используются новейшие технологии проектирования, строительства и эксплуатации, что позволяет снизить энергопотребление, повысить комфортность внутренней среды и создать ряд других преимуществ при минимальном ущербе для окружающей среды. Эко-здания потребляют

меньше энергии, воды и материалов, чем традиционные здания, и производят меньше отходов [2].

Существуют различные способы достижения устойчивости зданий. Наиболее распространенные включают в себя [3]:

- ❖ Использование переработанных и экологически чистых материалов с минимальным воздействием на окружающую среду;
- ❖ Эффективное проектирование зданий с меньшим потреблением энергии и воды;
- ❖ Зеленую крышу, покрытую растениями. Она обладает теплоизоляционным эффектом, уменьшает сток дождевой воды и улучшает качество воздуха;
 - ❖ Солнечные панели, вырабатывающие электроэнергию для зданий;
- ❖ Пассивный солнечный дизайн, использующий солнечную энергию для обогрева и охлаждения.

Основные стимулы, которые подталкивают участников устойчивого «зеленого» строительства внедрять экологичные решения и новейшие технологии в свою деятельность, можно разделить на две группы [4]:

- 1. Внешние выгоды, которые получают со стороны государственных органов: в основном это различные финансовые и нефинансовые стимулы;
- 2. Выгоды, создаваемые самим зеленым проектом, делающие объект привлекательным и повышающие его востребованность и рыночную стоимость: финансовые, экономические, социальные и экологические факторы.

Финансовые стимулы включают в себя специальные налоговые и тарифные льготы, а также льготные кредиты и субсидии, выделяемые из бюджета на реализацию энергоэффективных проектов.

Нефинансовые меры поддержки и стимулирования в реализации устойчивых и энергоэффективных проектов представлены в таблице № 1.

Таблица № 1 Нефинансовые меры поддержки и стимулирования

Предоставление застройщику определенных привилегий	Сокращение сроков и упрощение процедур получения необходимых разрешений и лицензий	Организационные инициативы
 упрощение процедур изменения вида использования разрешенных земельных участков; предоставление лучших участков для строительства устойчивых (зеленых) зданий; выдача разрешений на увеличение этажности или плотности застройки сверх установленных пределов. 	 предоставление услуг по принципу «одного окна»; оптимизация срока получения разрешений на строительство и ввод в эксплуатацию; оптимизация допусков на подключение к сетям инженернотехнического обеспечения. 	• муниципалитеты работают над созданием экологичных (зеленых) зданий и подают пример частным застройщикам.

Кроме различных внешних стимулов, участники устойчивого «зеленого» строительства при выборе зеленых технологий руководствуются теми преимуществами, которые будет создавать объект с точки зрения его финансовой, социальной и экологической устойчивости.

Одним из основных экономически-финансовых преимуществ устойчивых «зеленых» зданий является снижение эксплуатационных расходов — 66%. К тому же, в некоторых случаях экологичные здания стоят дороже обычных. Инвестиции как в новое строительство, так и в

экологически безопасную реконструкцию и модернизацию повышают стоимость недвижимости. Дополнительно, финансовые преимущества показаны на рисунке 1 [1].

Рис. 1. – Важные преимущества зеленого строительства для бизнеса [1]

Поощрение устойчивых методов ведения бизнеса неизменно является одним из основных социальных факторов развития зеленого строительства. К ним относятся: повышение производительности труда сотрудников, достаточная активность зеленого строительства, развитие социального пространства, учет интересов местного населения.

Рис. 2. – Социальные преимущества зеленого строительства [1]

Все это является основополагающими элементами устойчивого «зеленого» строительства. Более подробно социальные преимущества устойчивого строительства показаны на рисунке 2 [1].

Охрана окружающей среды является одним из главных экологических преимуществ. Помимо этого, не менее важные экологические преимущества устойчивого «зеленого» строительства показаны на рисунке 3.

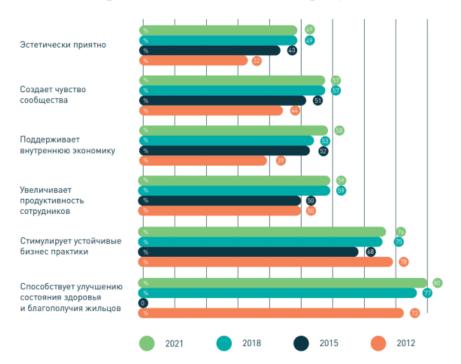


Рис. 3. – Экологические преимущества зеленого строительства [1]

Несмотря на существенные преимущества и выгоды устойчивых зданий, говорить о распространении практики устойчивого «зеленого» строительства преждевременно. Существует ряд проблем, которые все еще препятствует дальнейшему развитию данной области. Наиболее важная проблема связана с противоречивыми приоритетами различных участников рынка.

Застройщику важна стоимость строительства, ожидаемая доходность и сроки окупаемости.

Владельца же волнуют показатели заполняемости и будущие эксплуатационные расходы, связанные со сдачей здания в аренду или его продажей.

Покупателей и арендаторов часто волнуют вопросы удобства, безопасности, эргономики и эксплуатационных расходов.

На рисунке 4, более подробнее показаны основные проблемы устойчивого «зеленого» строительства в странах-лидерах [5].

Рис. 4. – Проблемы развития рынка зеленого строительства [1]

Одними из основных способов решения проблем, связанных с устойчивым «зеленым» строительством, являются развитие и внедрение сертификации зданий. Создание систем национальной системы сертификации дает возможность вывести рынок устойчивого «зеленого» строительства качественно более высокий уровень. Это на ОНЖОМ осуществить благодаря таким факторам, как:

- ❖ Доступность финансовой информации о «зеленом» рынке. Она открывает возможность для расширения инвестиций;
- ❖ Доступность систем сертификации. Благодаря ей снижаются входные критерии для участников, направленных на устойчивое строительство;
- ❖ Создание нового органа по оценке устойчивых «зеленых» зданий и сооружений, включающего высококвалифицированное профессиональное сообщество экспертов;
- ❖ Разработка определенных критериев для предоставления государственной поддержки.

Система сертификаций устойчивых «зеленных» зданий и сооружений предоставляет различные льготы и привилегии:

Экономические преимущества. Сертификация дает возможность автору «зеленого» проекта получать кредиты и льготы от органов власти;

Экологические преимущества. Использование новейших «зеленых» технологий, благодаря снижению потребления основных ресурсов, позволяет снизить негативное воздействие на окружающую среду;

Социальные преимущества. Здания, которые имеют сертификацию, более популярны нежели обычные [6].

Из-за роста внимания к устойчивому «зеленому» строительству зданий в 1990-х годах начали разрабатывать международные системы сертификации.

BREEA

Именно в это время были разработаны два основных глобальных стандарта: BREEAM и LEED.

Название:

BREEAM

Дата создания:

1990 год

Страна создания:

Великобритания

Число сертифицированных

30 448

проектов:

BREEAM – это первая добровольная система оценки экологичности зданий, разработанная компанией BRE Global в Великобритании. По системе BREEAM сертифицированы здания в 93 странах мира. Система направлена на улучшение характеристик, эффективности и экологичности зданий.

Оценивают проекты по следующим категориям: использование водных ресурсов, использование экологичных материалов, переработка и повторное использование отходов, воздействие на окружающую среду [7].

Название: LEED

Дата создания: 1998 год

Страна создания: США

Число сертифицированных 144 471

проектов:

LEED — это система добровольной сертификации зданий, разработанная советом по экологическому строительству U.S. Green Building Council (USGBC) в США для оценки энергоэффективности и устойчивости проектов. Система разработана с учетом национальных приоритетов и требований, но также способствует решению более широких вопросов устойчивости. Через процесс сертификации LEED прошли проекты в 162 странах.

LEED оценивает проекты по следующим категориям: использование водных ресурсов, условия внутренней среды, концентрация воздуха и его энергия, использование экологичных материалов, инновации и пассивный дизайн [8].

WELL – это международный стандарт для устойчивых «зеленых» зданий, администрируемый международным институтом WELL Building Institute (IWBI). Он специально разработан для рассмотрения элементов дизайна здания, которые влияют на здоровье, благополучие и производительность пользователей.

WELL оценивает здания по таким критериям, как: воздух, вода, питание, освещение, физическая активность, тепловой комфорт, управление шумом и материалы, тепловой комфорт, управление шумом, материалы, психическое здоровье, сообщество и инновации [9].

Fitwel – относительно новая система зеленой сертификации, который разрабатывался центром по контролю и профилактике заболеваний (CDC) при поддержке администрации общих служб США – General Services

Administration (GSA). Разрабатывалась сертификация для формирования здоровой доступной среды, поддерживающей высокое качество жизни.

Проекты Fitwel оценивают проекты по следующим категориям: здоровье, безопасность и комфорт, инклюзивность, температурный контроль, поощрение физической активности и грамотного отдыха [10].

Можно заметить существенное различие между комбинацией BREEAM и LEED и комбинацией WELL и Fitwel: если BREEAM и LEED фокусируются в первую очередь на будущем самого здания: на его устойчивости «экологичности», на воздействии его на окружающую среду, эффективности использования ресурсов для устойчивости, то сертификация WELL и Fitwel направлена на удовлетворение потребностей современного человека, то есть его физического и психического здоровья.

Сегодня сертификация WELL и Fitwel набирают все большую популярность. Это связано с тем, что в этих стандартах уже заложены инструменты, необходимые для создания условий, гарантирующих безопасное пребывание в закрытых помещениях.

По данным платформы Global Data, в пятерку лидеров по объему рынка зеленого строительства в 2021 году вошли Китай, США, Индия, Индонезия и Бразилия.

В 2021 году Китай был ведущим рынком экологически чистого строительства, его стоимость составила 92 185 миллионов долларов, что на 4,1% больше, чем в 2020 году. За ними следуют США, которые занимают второе место с показателем в 86 010 миллионов долларов, что на 0,9% больше по сравнению с 2020 годом, в то время как совокупная рыночная стоимость трех других рынков (Индии, Индонезии и Бразилии) в 2021 году составит 63 740 миллионов долларов [11].

По данным BREEAM, большая часть рынка приходится на коммерческий сектор: на офисные здания приходится 23%, на

промышленные и многофункциональные здания - 12%, на торговые объекты - 14%. Около 8,9 % зеленых проектов сосредоточено в образовательном секторе, а на жилой сектор приходится 7% [7].

Среди проектов, сертифицированных по стандарту LEED, 41% приходится на жилой сектор, на офисные здания - 24%, а на здания промышленного сектора приходится менее 5% (см. рисунок 5) [8].

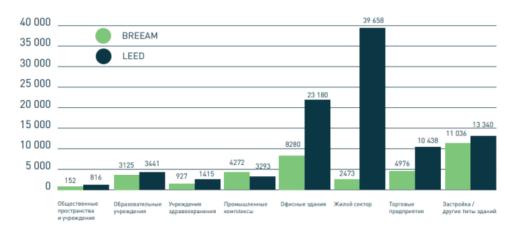


Рис. 5. – Распределение типов зданий по системе сертификации BREEAM и LEED [1]

Приоритетными направлениями устойчивого «зеленого» строительства к 2024 году являются новое строительство и реконструкция зданий коммерческого и некоммерческого назначения, а также реконструкция зданий (см. рисунок 6).

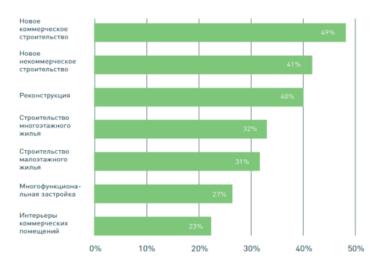


Рис. 6. – Приоритетные направления зеленого строительства

на 2024 г. [1]

Более половины сертифицируемых проектов инициируется частным сектором. Доля государственных проектов, сертифицированных в соответствии с требованиями LEED, составляет менее 20%.

Рис. 7. – Распределение по типам владельцев зданий [1]

Сертификация LEED применяется в основном для проектов в Северной и Южной Америке, Китае, Индии, Японии, Германии, Турции и некоторых регионах Африки.

По количеству сертифицированных проектов с требованиями LEED лидирует США – 75% от общего портфеля проектов, на втором месте – Китай, где сертифицировано 6758 зданий, из которых 3827 прошли оценку проектов с общей площадью более 90 млн. м². В Канаде сертифицировано 3132 проекта, а в Индии – 2161 проект.

Сертификация по BREEAM более распространена в EC, Великобритании, России и Казахстане.

Около 49% от общего портфеля (более 14000 проектов) составляют устойчивые проекты в Великобритании. Второе место по количеству проектов занимает Франция, где оценено 3370 проектов, или 11% от общего

портфеля BREEAM. Третьей по величине страной является Нидерланды с долей 8%. Доля России составляет всего лишь 0,7%.

Преобладание международных систем сертификации и их доля в разных странах показана на рисунке 8 и 9.

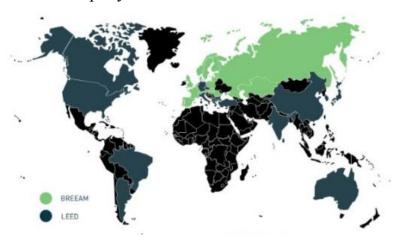


Рис. 8. – Международные системы сертификации в разных странах [1]

Рис. 9. – Проектная доля стран сертифицируемых по LEED и BREEAM [1]

Успешную реализацию (зеленых) устойчивых проектов рассмотрим на примере проектов России. Одним из крупных проектов, прошедших сертификацию LEED в, является бизнес-парк Румянцево в Москве (см. рисунок 10).

Соте Соте В Румянцево состоит из: офисных зданий класса А, благоустроенных зеленных территорий, многочисленных парков, зон отдыха, торговой галерии, подземного и надземного паркинга, Azimut сити отеля Соте Москва 4 и жилого комплекса бизнес-класса. Проект парка был разработан чешским архитектурным бюро Jakub Cigler Architecty в соответствии с принципами прогрессивной архитектуры.

Рис. 10. – Бизнес-парк (ComCity) в Румянцево в Москве [12]

В проекте использованы такие современные технические решения, как проектирование фасадов с повышенным тепло-и светопропусканием, установка на фасадах автоматических наружных жалюзи, применение систем холодоснабжения, использование охлаждающих жалюзи, использование охлаждающих балок, холодильных камер, использование энергоэффективных лифтов и повторное использование серой воды. ComCity - это единственный в Москве офисный парк, отвечающий международным зеленым стандартам, и имеющий сертификат LEED Gold.

Благодаря этому сертификату, ComCity может привлекать в качестве арендаторов более стабильные компании, которые предпочитают арендовать большие площади на более длительный срок, что повышает устойчивость объекта к изменениям экономической ситуации [12].

Еще одним примером устойчивого «зеленого» строительства в России, соответствующий зеленым стандартам, и имеющий сертификат LEED Gold

является завод по производству железнодорожных подшипников SKF в Твери (см. рисунок 11). Завод стал первым промышленным предприятием в России, получившим сертификат устойчивого «зеленого» строительства. На предприятии внедрены самые современные технологии производства, энергосбережения, экологической безопасности.

Рис. 11. – Завод по производству железнодорожных подшипников SKF в Твери [13]

Зеленные технологии, которые используются на объекте [13]:

Использование тепла. В системах подготовки холодной воды для технологических процессов используются энергоэффективные чиллеры, утилизирующие отработанное тепло для отопления зданий.

Автоматическое управление инженерными системами. Позволяет проводить детальный анализ энергопотребления.

Вентиляция по мере необходимости. Обеспечение оптимальных условий труда и энергоэффективности.

Естественное дневное освещение. Около 90% всех помещений здания имеют естественное освещение в светлое время суток.

Вторичное использование воды. Инновационный процесс вакуумной дистилляции воды - 100% повторное использование воды при фосфатировании.

Выводы.

Таким образом, устойчивое «зеленое» строительство зданий с применением новейших, экологических технологий – один из ключевых инструментов сохранения окружающей среды и повышения качества жизни населения. Подобные проекты не только снижают негативное воздействие на окружающую среду, но еще и создают комфортные условия для проживания и временного нахождения людей, а также приносят экономическую выгоду [14].

Соблюдение принципов зеленого строительства значительно повышает качество объектов, увеличивает их востребованность и привлекательность для конечных пользователей и потенциальных покупателей, а также снижает затраты на содержание и эксплуатацию.

Однако развитие рынка зеленого строительства осложняется рядом проблем, в том числе противоречивыми приоритетами заинтересованных сторон и не достаточной государственной поддержкой таких проектов.

Важным фактором, обеспечивающим развитие и расширение рынка устойчивого «зеленого» строительства, является создание и активное внедрение схем добровольной сертификации, позволяющих подтвердить качество и статус устойчивых зданий. Такие схемы действуют не только на международном, но еще и на национальном уровне во многих странах мира [1].

Литература

1. АНО «Национальный Центр ГЧП» и АО «ДОМ.РФ». Устойчивое строительство зданий. Мировые тренды и перспективы для России. Москва, июнь 2022 г., URL:

pppcenter.ru/upload/iblock/804/804ae66a9fe353e4a57a7d9a21c31cd9.pdf

2. Бурцева В. Почему девелоперы в России становятся «зелеными»?

- // Московская школа менеджмента «СКОЛКОВО», 2021 г., URL: skolkovo.ru/interviews/pochemu-developery-v-rossii-stanovyatsya-zelenymi/
- 3. Халлыева Б., Гурбангылыджов М., Бегполадов С. Устойчивое строительство: что это такое и как этого достичь // Вестник науки № 6 (63) том 5. С. 494 498. Июнь 2023 г., URL: vestnik-nauki.com/article/9404
- 4. Najimu S., Ayokunle O. O., Temitope O. Reward and compensation incentives for enhancing green building construction // Environmental and Sustainability Indicators, 2021. URL: researchgate.net/publication/353445741
- 5. Bernstein Larry, Logan Katharine. World Green Building Trends. 2021. URL: corporate.carrier.com/Images/Corporate-World-Green-Building-Trends-2021-1121_tcm558-149468.pdf
- 6. Центр исследований и экологического инжиниринга HPBS. Преимущества от международной сертификации зданий. URL: hpb-s.com/news/preimushhestva-ot-mezhdunarodnoj-sertifikaczii-zdanij-po-leed-breem-well/
 - 7. BREEAM Projects. URL: tools.breeam.com/projects/index.jsp
 - 8. U.S. Green Building Council / LEED projects profiles. URL: usgbc.org
- 9. WELL International WELL Building Institute (IWBI) URL: wellcertified.com/
- 10. Fitwel. Обзор системы сертификации HPBS, 2021 г., URL: hpb-s.com/news/fitwel-certification/
- 11. Global Data. Пять крупнейших рынков экологически чистого строительства в 2021 году. URL: globaldata.com/data-insights/construction/the-top-five-green-building-markets-in-2021/
 - 12. Официальный сайт «COMCITY» URL: comcity.com.ru/about
- 13. Дувинг С. «Зеленые» здания в России и за рубежом // Вестник ЮНИДО в России, №8. URL: unido-russia.ru/archive/num8/art8_17/

14. Шеина С.Г., Пасько Е.А. Экологические технологии при строительстве студенческих кампусов // Инженерный вестник Дона, 2023, №7. URL:

ivdon.ru/ru/magazine/archive/n11y2023/8783

References

- 1. ANO «National PPP Center» and JSC «DOM.RF». Moskva, June 2022. URL: pppcenter.ru/upload/iblock/804/804ae66a9fe353e4a57a7d9a21c31cd9.pdf
- 2. Burtseva V. Moskovskaya shkola menedzhmenta «SKOLKOVO» 2021. URL: skolkovo.ru/interviews/pochemu-developery-v-rossii-stanovyatsya-zelenymi/
- 3. Hallyeva B., Gurbangylyjov M., Begpoladov S. Vestnik nauki. № 6 (63) T.5. JUNE 2023. URL: vestnik-nauki.com/article/9404
- 4. Najimu S., Ayokunle O. O., Temitope O. Environmental and Sustainability Indicators, 2021. URL: researchgate.net/publication/353445741
- Bernstein Larry, Logan Katharine. World Green Building Trends. 2021.
 URL: corporate.carrier.com/Images/Corporate-World-Green-Building-Trends-2021-1121_tcm558-149468.pdf
- 6. Tsentr issledovaniy i ekologicheskogo inzhiniringa HPBS [HPBS Center for Research and Environmental Engineering]. URL: hpb-s.com/news/preimushhestva-ot-mezhdunarodnoj-sertifikaczii-zdanij-po-leed-breem-well/
 - 7. BREEAM Projects. URL: tools.breeam.com/projects/index.jsp
 - 8. U.S. Green Building Council / LEED projects profiles URL: usgbc.org
- 9. WELL International WELL Building Institute (IWBI) URL: wellcertified.com/

- 10. Fitwel. Obzor sistemy sertifikatsii HPBS [Overview of the certification system HPBS], 2021 Γ., URL: hpb-s.com/news/fitwel-certification/
- 11. Global Data. URL: globaldata.com/data-insights/construction/the-top-five-green-building-markets-in-2021/
- 12. Ofitsialnyy sayt «COMCITY» [Official website «COMCITY»]. URL: comcity.com.ru/about
- 13. Duwing S. Vestnik YUNIDO v Rossii. № 8. URL: unidorussia.ru/archive/num8/art8_17/
- 14. Sheina S.G., Pasko E.A. Inzhenernyj vestnik Dona. 2023. №.7. URL: ivdon.ru/ru/magazine/archive/n11y2023/8783

Дата поступления: 12.11.2023

Дата публикации: 29.12.2023