Закономерности процесса трансформации цинка в черноземе обыкновенном в присутствии различных анионов

Т.М. Минкина, Т.В. Бауэр, С.С. Манджиева, О.Г. Назаренко, С.С. Сушкова, В.А. Чаплыгин

В модельном эксперименте изучено влияние сопутствующих анионов на трансформацию соединений цинка в почве. Выявлены различия в количестве извлекаемых подвижных соединений металла в почве в зависимости от формы и дозы внесения различными соединениями цинка. Влияние сопутствующих анионов на содержание подвижной формы металла в почве убывает в ряду: $PO_4^{2-} \approx Cl^- > NO_3^- > SO_4^{2-} > CH_3COO^- > O^-$. Изучена трансформация соединений цинка за 2-х летний период после поступления металла в почву. Установлено более прочное закрепление металла в почве в течении времени.

Введение

В последнее время одной из наиболее острых проблем человечества является загрязнение окружающей среды различными поллютантами. Возрастающие темпы антропогенного воздействия вызвали активный подъем средозащитной деятельности практически во всех развитых странах мира [3]. Тяжелые металлы (ТМ) входят в состав приоритетных загрязнителей окружающей среды. Экзогенные формы ТМ поступают в почву из различных источников. Поступающие в почву металлы аккумулируются в ее верхних И вступают с почвенными компонентами в различные горизонтах взаимодействия. Влияния на данные процессы оказывают адсорбента (т.е. почвенных частиц) и химические особенности металла. [2, 4, 5]. В ходе дальнейшей трансформации они вовлекаются в различные химические и физико-химические процессы, которые влияют на их дальнейшую судьбу [14].

Многообразие механизмов взаимодействия металлов с компонентами почвы проявляется в разнообразии форм их существования в почве.

Локализация ТМ в тех или иных формах зависит от ряда факторов: количества и состава соединений, унаследованных от материнской породы и поступающих из антропогенных источников, взаимодействия с компонентами почвенных растворов при вторичном перераспределении. Характер этих взаимодействий связан как со свойствами ионов металлов, так и с составом и свойствами почв.

В свою очередь подвижность, миграционная способность, доступность живым организмам и токсическое действие ТМ зависит от формы нахождения в почвах, которые, в свою очередь, тесно связаны с составом поступающих в почву из антропогенных источников химических соединений [2, 15]. Среди них можно выделить две группы, отличающиеся по своей растворимости: легкорастворимые соединения, представленные, прежде всего, солями минеральных кислот, и труднорастворимые соединения, в основном представленные оксидами.

Легкорастворимые соединения ТМ, попадающие в почву, сразу включаются в химические реакции взаимодействия с компонентами почв. При поступлении в почву труднорастворимых соединений ТМ, первой и самой медленной стадией их трансформации является растворение [6]. Время полного растворения внесенных в почву оксидов ТМ в количествах, соответствующих реально существующим уровням загрязнения, может составлять от полугода до десятков лет.

Оксиды и соли металлов, попавшие в почву, вероятно, представляют различную потенциальную опасность для окружающей среды и живых организмов. Можно предположить, что при загрязнении почвы оксидами доля подвижных соединений ТМ в почве будет меньше, чем при попадании ТМ в форме легкорастворимых солей. Это означает, что оксиды ТМ, попадающие в почву, должны иметь меньшую экологическую опасность в расчете на единицу массы металла.

Целью настоящей работы является выявление закономерностей процессов трансформации Zn в черноземе обыкновенном в присутствии различных анионов.

Методы исследования

Для проведения исследований отбирался верхний 0-20 см слой почвы целинного участка, представленный черноземом обыкновенным тяжелосуглинистым на лессовидных суглинках. Исследуемая почва характеризуются следующими физическими и химическими свойствами: $C_{opr.}$ – 6,3%, pH – 7,2; EKO – 371 мМ·кг⁻¹; обменные катионы (мМ·кг⁻¹): Ca^{2+} –310, Mg^{2+} – 45, Na^{+} –1, $K_{oбм.}$ – 228; $CaCO_3$ – 0,1%; $P_2O_{5подв.}$ – 1,6 мг/100 г; содержание физической глины – 48,1%, ила – 28,6%.

Для изучения трансформации Zn в поглощенном состоянии использовали незагрязненные пробы почв, а также пробы почв, загрязненные различными соединениями TM в лабораторных условиях. В качестве загрязняющих компонентов были использованы оксиды, ацетаты, сульфаты, хлориды, нитраты и фосфаты цинка. Металл в форме данных соединений реально поступает в почву из различных антропогенных источников [6].

Почву массой 1 кг, пропущенную через сито с диаметром ячеек 1 мм, перемешивали с металлом в виде сухих солей в дозе 300 мг/кг и 2000 мг/кг и вносили в сосуды. В качестве дренажа использовали керамзит. Затем производили полив почвы до наименьшей полевой влагоемкости и поддерживали влажность на этом уровне в течение всего эксперимента. Соли вносились раздельно. Повторность эксперимента трехкратная. Закладка опыта была произведена с мая по июль 2010 года. Отбор почвенных образцов для анализа производили через один и два года.

Изучение подвижных форм металла в почве проводилось по схеме Соловьева [11]. Экстрагентами служили 1 н. ацетатно-аммонийный буфер (ААБ) с рН 4.8, извлекающий обменные формы металла; 1% ЭДТА в ААБ с рН 4.8, извлекающий обменные и комплексные формы. По разнице между содержанием Zn в вытяжке смешанного реагента и ААБ определялось

количество комплексных соединений; 1н HCl – кислоторастворимые формы соединений. По разнице между содержанием Zn в вытяжке HCl и AAБ определялось количество специфически сорбированных соединений [7]. Содержание металла в вытяжках определяли методом атомно-абсорбционной спектрометрии (AAC).

Суммарное содержание обменных, комплексных и специфически сорбированных соединений образует группу непрочно связанных (НС) соединений металла.

Результаты и их обсуждение

Общее содержание Zn в исходной незагрязненной почве (0 - 20 см) составляет 85 мг/кг, что соответствует литературным данным [8, 12]. Этот показатель превышает кларковые значения в 1,7 раза (кларк Zn для почв по А.П. Виноградову [1] равен 50 мг/кг).

Количество обменных соединений Zn в исходной почве не превышает 1 мг/кг (табл. 1).

Преобладающая часть Zn (85-87%) прочно связана с поверхностью почвенных частиц (табл. 2). Непрочно связанные соединения металла составляют всего 13-15% от их валового содержания. Эти соединения в основном представлены специфически сорбированными формами (87-88% от группы непрочно связанных соединений) (табл. 2), что свидетельствует о достаточно прочных связях изучаемого металла с почвенными компонентами [10]. Доля обменных и комплексных форм Zn незначительна (2 и 11% соответственно).

При искусственном загрязнении почвы Zn в дозах 300 мг/кг и 2000 мг/кг после 1-года инкубации отмечается изменение содержания Zn в экстрагируемых формах. При внесении возрастающих количеств металла в почве происходит заметное увеличение содержания непрочно связанных соединений (44-98% от общего содержания). Возрастание подвижности металла в почве происходит в связи с увеличением количества всех миграционно способных форм (табл. 2). Однако рост содержания обменных,

комплексных и специфически сорбированных соединений происходит с разной скоростью.

Сумма непрочно связанных соединений Zn так же, как и в незагрязненной почве преимущественно представлена специфически сорбированными соединениями. В тоже время их количество уменьшается (50-66% от суммы) при сравнении с незагрязненной почвой. Распределение металла в группе следующее: специфически сорбированные > обменные > комплексные.

Незначительное содержание цинка в комплексных формах объясняется его бо́льшим сродством к карбонатам и полуторным окислам, чем к органическому веществу [8, 13]. В то же время установлена разница в количестве извлекаемого Zn при внесении различных соединений металла в почву. Это связано с рядом факторов: различной растворимостью вносимых соединений, прочностью их адсорбции и состоянием в жидкой фазе. Например, при внесении Zn в форме труднорастворимого оксида после года инкубации содержание всех его подвижных соединений в почве в 5-7 раз ниже, чем при внесении его в форме более легкорастворимых солей.

С увеличением дозы Zn, внесенного в почву, его относительное содержание во всех подвижных формах и, особенно, в обменных, последовательно возрастает. Так, при внесении Zn в форме хлоридов в первый год загрязнения в дозе 300 мг/кг происходит возрастание количества обменных соединений в 340 раз, комплексных в 34 раза, специфически сорбированных в 19 раз; при внесении металла в дозе 2000 мг/кг в 2600, 57 и 100 раз соответственно. Аналогичная закономерность характерна при внесении металла в форме других солей. Возможно, что скорость образования обменных и комплексных соединений металла наибольшая.

Таблица 1 Трансформация различных форм соединений цинка в черноземе обыкновенном после поступления его в почву, мг/кг

			-		1		1				
Количес	Обменные формы		Комплексные		Специфически		Непрочно				
ТВО					сорбированные		связанные				
внесенн		формы		ОМЫ	соединения						
ого											
металла,	1 год	2 год	1 год	2 год	1 год	2 год	1 год	2 год			
мг/кг	-73	-73	- / 1		-73		-73	-73			
контрол	0,3±0,0	0,2±0,0		1,2±0,							
Ь	1	2	$1,4\pm0,1$	2	10,9±1,2	10,1±0,9	12,6±1,4	11,5±1,2			
ZnO											
300	83,8±7,	95,0±10	19,1±2,	14,2±	111,2±10	209,0±20	214,1±18	318,2±29			
	7	,1	6	1,6	,5	,1	,0	,4			
2000	94,1±8,	55,0±4,	5,4±0,8	39,5±	814,4±46	475,5±41		570,0±34			
	6	9		3,8	,0	,9	,8	,7			
Zn(CH ₃ COOH) ₂											
	34,5±3,	24,3±2,	51,8±4,	$15,0\pm$	146,5±15	178,2±16	232,8±20	217,5±19			
300	9	7	7	0,7	,2	,8	,0	,9			
	461,3±2	430,0±2	110,0±7	45,7±	622,5±31	633,0±31		1108,1±3			
2000	4,3	0,0	,7	4,2	,8	,9	1,7	9,9			
ZnSO ₄											
200	105,5±9	65,0±6,	16,7±1,	12,5±	120,7±9,	149,5±14	242,9±19	227,7±18			
300	,1	9	3	1,0	9	,9	,2	,6			
2000	476,6±2	388,0±1	60,0±6,	51,5±	1058,7±5	1061,0±4	1595,3±5	1500,5±5			
2000	7,5	9,3	4	5,4	1,7	8,6	7,7	0,1			
$Zn(NO_3)_2$											
200	96,8±8,	88,0±8,	27,3±2,	16,2±	163,3±14	175,0±11	287,4±23	279,2±12			
300	2	1	1	1,5	,8	,8	,1	,5			
2000	701,3±2	546,5±4	177,5±1	64,0±	1076,2±5	1077,0±5		1687,5±4			
2000	9,4	0,2	3,9	6,0	5,9	1,5	4,9	7,9			
<u>'</u>	,	,	,	ZnCl ₂		,	,	,			
200	102,0±8	59,7±6,	47,0±5,	19,5±	209,5±11	233,3±19	358,5±32	312,5±13			
300	,7	3	1	1,2	,9	,0	,4	,3			
2000	780,0±3	425,5±3	80,1±6,	65,5±	1092,5±4	1105,5±3	1952,6±7	1596,5±4			
2000	6,4	4,7	0	6,6	4,9	9,4	6,9	1,6			
$Zn_3(PO_4)_2$											
300	101,8±9	75,0±5,	63,5±7,	23,0±	192,8±18	208,0±17	358,1±22	306,0±23			
	,0	9	6	2,6	,0	,5	,9	,0			
2000	871,3±3	641,8±3	80,0±9,	67,2±	963,8±38	1170,2±5	1915,1±7	1879,2±6			
	9,3	9,9	7	6,8	,7	9,7	6,1	0,3			

Таблица 2 Относительное содержание непрочно связанных соединений цинка в черноземе обыкновенном в течение 2-х лет после внесения солей металла

Количество внесенного металла, мг/кг	<u>Общее сод</u> НС	<u>цержание*</u> ?**	НС* обменные/комплексные/ специфически сорбированные***								
	1 год	2 год	1 год	2 год							
контроль	85 15	<u>89</u> 13	13 2/11/87	12 2/10/88							
ZnO											
	370	379	214	318							
300	58	84	39/9/52	30/4/66							
2000	<u>2068</u>	2074	914	<u>570</u>							
2000	44	27	10/1/89	10/7/83							
Zn(CH ₃ COOH) ₂											
200	368	374	233	217							
300	63	58	15/22/63	11/7/82							
2000	2074	2081	1194	1108							
2000	57	53	39/9/52	39/4/57							
ZnSO ₄											
200	<u>357</u>	<u>351</u>	243	228							
300	68	351 65	43/7/50	29/6/65							
2000	<u>2052</u>	<u>2061</u>	<u>1595</u>	<u>1500</u>							
2000	78	73	30/4/66	26/3/71							
	Zn(N	$(O_3)_2$	_								
300	<u>367</u>	<u>361</u>	<u>287</u>	<u>279</u>							
300	78	77	34/9/57	31/6/63							
2000	<u>2059</u>	<u>2066</u>	<u>1955</u>	<u>1687</u>							
2000	95	82	36/9/55	32/4/64							
$ZnCl_2$											
300	<u>364</u>	<u>372</u>	<u>358</u>	<u>312</u>							
300	98	84	29/13/58	19 /6/75							
2000	<u>2065</u>	<u>2058</u>	<u>1953</u>	<u>1596,5</u>							
2000	95	78	40/4/56	27/4/69							
	$Zn_3(PO_4)_2$										
300	<u>369</u>	<u>363</u>	<u>358</u>	<u>306</u>							
300	97	84	28/18/54	25/7/68							
2000	<u>2065</u>	<u>2073</u>	<u>1915</u>	<u>1879</u>							
* * * * * * * * * * * * * * * * * * * *	93	91	46/4/50	34/4/62							

^{* &}lt;sub>МГ</sub>/кг;

^{** %} непрочно связанных соединений от общего содержания;

^{*** %} от суммы непрочно связанных соединений

Влияние анионов на количество образующихся непрочно связанных соединений Zn закономерно снижается в ряду: $PO_4^{2-} \approx Cl^- > NO_3^- > SO_4^{2-} > CH_3COO^- > O^-$.

На второй год после загрязнения наблюдаются иные закономерности в накоплении соединений Zn. Содержание обменных и комплексных форм Zn при внесении металла в почву в форме различных соединений заметно снижается сравнению c первым объясняется ПО годом, что трансформационными процессами, определяющими более прочное закрепление металла в почве с течением времени.

Исследования показали [9], что процесс поглощения ТМ черноземом происходит достаточно быстро, но в течение нескольких лет равновесие не В устанавливается. процессе установления равновесия происходит образование более устойчивых соединений металла почвенными компонентами. Наблюдается активный специфически рост ДОЛИ сорбированных соединений, которые рассматривать ОНЖОМ как промежуточные, переходные к прочно связанным. Возможно, частично происходит их пополнение за счет соединений, ранее находившихся в форме обменных и комплексных форм. Опыты по изучению трансформации техногенной пыли, содержащей оксиды и сульфиды ТМ с почвами, также указывают на возможность перехода обменных форм цинка В малорастворимые соединения [2].

Таким образом, в течение двух лет не происходит трансформации поглощенных соединений Zn с образованием более прочно связанных соединений металла с почвенными компонентами.

Выводы

Таким образом, трансформация Zn в почве зависит от сопутствующего аниона, концентрации внесенного металла в почву и времени взаимодействия металла с твердыми фазами почв. Процесс трансформации поглощенного почвой металла идет в сторону образования менее подвижных соединений.

Работа проводилась при финансовой поддержке Министерства образования и науки Российской Федерации (14.515.11.0055).

Литература

- 1. Виноградов А.П. Геохимия редких и рассеянных химических элементов в почвах. М., 1957. 68 с.
- 2. Горбатов В.С. Устойчивость и трансформация оксидов тяжелых металлов (Zn, Pb, Cd) в почвах // Почвоведение 1988. № 1. С. 35-42.
- 3. Зерщикова М.А. Последствия загрязнения окружающей среды и их влияние на экономические показатели (методы сохранения и улучшения состояния окружающей среды) [Электронный ресурс] // Инженерный Вестник Дона. 2011. № 1. Режим доступа: http://www.ivdon.ru/magazine/archive/n1y2011/326 (доступ свободный) Загл. с экрана. Яз. рус.
- 4. Капралова О.А. Влияние урбанизации на эколого-биологические свойства почв г.Ростова-на-Дону [Электронный ресурс] // Инженерный Вестник Дона. 2011. №4. Режим доступа: http://www.ivdon.ru/magazine/archive/n4y2011/594 (доступ свободный) Загл. с экрана. Яз. рус.
- 5. Колесников С.И., Казеев К.Ш., Вальков В.Ф. Экологические последствия загрязнения почв тяжелыми металлами. Ростов-на-Дону: Издво СКВШ. 2000. 232с.
- 6. Ладонин Д.В., Карпухин М.М. Фракционный состав соединений никеля, меди, цинка и свинца в почвах загрязненных оксидами и растворимыми солями металлов // Почвоведение. 2011. № 8. С. 953-965.
- 7. Минкина Т.М., Мотузова Г.В., Назаренко О.Г., Крыщенко В.С., Манджиева С.С. Трансформация соединений тяжелых металлов в почвах степной зоны // Почвоведение. 2008. № 5.

- 8. Минкина Т.М., Пинский Д.Л., Самохин А.П., Крыщенко В.С., Гапонова Ю. И., Микаилсой Ф.Д. Влияние сопутствующего аниона на поглощение цинка, меди и свинца почвой // Почвоведение. 2009. № 5. С. 560- 566.
- 9. Обухов А.И. Устойчивость черноземом к загрязнению тяжелыми металлами // Проблемы охраны, рационального использования и рекультивация черноземом. М.: Наука, 1989. С. 33-41.
- 10. Потатуева Ю.А., Касицкий Ю.И., Сидоренкова Н.К. Распределение подвижных форм тяжелых металлов, токсичных элементов и микроэлементов по профилю дерново-подзолистой тяжелосуглинистой почвы при длительном систематическом применении удобрений // Агрохимия. 2001. №4. С. 61 66.
- 11. Практикум по агрохимии / Под ред. В.Г. Минеева. М.: Изд-во МГУ, 1989. 304 с.
- 12. Самохин А.П. Трансформация соединений тяжелых металлов в почвах Нижнего Дона: Автореф. дис... канд. биол. наук. Ростов н/Дону, 2003. 24 с
- 13. Самохин А.П., Минкина Т.М., Крыщенко В.С., Назаренко О.Г. Определение тяжелых металлов в почвах // Известия ВУЗов. Северо-Кавказский регион. Естественные науки. 2002. № 3. С. 82-86.
- 14. Benjamin, M.M., Leckie, J.O. Effect of complexation by Cl, SO₄, and S₂O₃ on adsorption behavior of Cd on oxide surfaces // Environ. Sci. Technol. 1982. V. 16. 2. pp. 162-170.
- 15. Chang Chien S.W., Liao J.H., Wang M.C., Madhava R. Effect of Cl and SO₄²⁻ and fulvate anions on Cd²⁺ free ion concentrations in soil and associated solutions // The Proceeding of 14-th International Conference on Heavy Metals in Environment "ICHMET". 2008. P. 86-88.