Биомониторинг генотоксичности окружающей среды г. Ростова-на-Дону с использованием *Pylaisia polyantha*

Г.В.Омельченко, Т.В.Вардуни, Е.И.Шиманская, В.А.Чохели, А.А.Вьюхина

Для оценки генотоксичности окружающей среды урбанизированных экосистем целесообразно использовать показатели гено- и цитотоксичности экстракта пилезии многоцветковой. Гено- и цитотоксичность экстракта можно оценить по уровню аберраций хромосом, а также по показателям митотического индекса в корневой меристеме гороха посевного, пророщенного на экстракте пилезии многоцветковой. При использовании показателей гено- и цитотоксичности в условиях урбанизированной экосистемы следует говорить о генотоксичности окружающей среды в случае статистически значимых отличий этих показателей от контроля.

Введение

Антропогенное воздействие на урбанизированные экосистемы приобретает все более масштабный характер, а токсические вещества, обладающие мутагенным эффектом и попадающие в окружающую среду, представляют собой реальную угрозу стабильности геномов живых организмов [1-4].

Разработка эффективных методов биомониторинга позволяет не только повысить объективность оценки генотоксичности окружающей среды, но и прогнозировать и моделировать развитие ситуации в урбанизированных экосистемах. Биотестирование с использованием растений получило широкое распространение [5-14]. Эпифитные мхи, к числу которых многоцветковая (Pylaisia polyantha), эффективно относится пилезия используются для оценки качества атмосферного воздуха, при этом, как правило, определяют содержание тяжелых металлов и радионуклидов в пробах мха. Вид пилезия многоцветковая (*Pylaisia polyantha*) имеет продолжительный жизненный цикл, высокие аккумуляционные способности.

В результате аккумуляции мутагенных веществ, экстракт пилезии многоцветковой, собранной на различных площадках урбоэкосистемы, может демонстрировать свойства гено- и цитотоксичности.

В связи с этим, целью данного исследования было проведение биомониторинга урбанизированной экосистемы (г. Ростов-на-Дону) на основе показателей гено- и цитотоксичности экстракта пилезии многоцветковой.

Методы исследования

В многолетнем мониторинге была оценена способность экстракта пилезии многоцветковой (*Pylaisiapolyantha*), произрастающей на исследуемых площадках г. Ростова-на-Дону, индуцировать аберрации хромосом в корневой меристеме гороха посевного (*Pisums ativum*), используемого в качестве модельного объекта. Исследования проводились на протяжении 3-х лет (2010-2012 гг.).

Пробы мха собирали с 10 площадок г. Ростова-на-Дону (на каждой площадке пробы мха собирали с коры 10 деревьев тополя дельтовидного) (рис.1).

Для приготовления экстракта пилезии многоцветковой (*Pylaisia polyantha*) к 10 г измельченного сырого веса мха добавляли 20 мл экстрагента и 0,5 часа интенсивно перемешивали на магнитной мешалке. Затем пробы фильтровали последовательным фильтрованием через серию фильтров с различным диаметром пор (последний фильтр –0,2мкм).

Всего было проанализировано 33 000 анафаз корневой меристемы гороха посевного (*Pisum sativum*).

Семена гороха (*Pisum sativum*,*L*., сорт Комет) проращивали на дистилированной воде, или на экстракте пилезии многоцветковой до достижения длины корешков 1,5-2 см. Фиксировали корневую меристему в ацетаталкогольном-фисаторе Кларка (смесь спирта и уксусной кислоты 3:1).

Материал хранился в холодильнике (при t=4C⁰ не более семи дней). Для окрашивания корешки переносились в колбу с красителем и нагревались в кипящей бане 12 минут, после чего выдерживались еще 12 часов при комнатной температур, а затем помещались в раствор 45% уксусной кислоты. Приготовление давленных препаратов осуществлялось по стандартной методике (Гостимский, 1974). Учёт аберраций хромосом в апексах корешков гороха проводили на стадии анафаз. В ходе анафазного анализа регистрировали следующие аберрации хромосом:

- одиночные хромосомные / хроматидные фрагменты;
- множественные фрагменты;
- хромосомные / хроматидные мосты;
- множественные аберрации
- отставания

Цитотоксичность экстракта пилезии многоцветковой оценивали по изме-нению митотической активности клеток корневой меристемы гороха посевного. Митотический индекс (МИ) определяют по формуле:

$$MU = \frac{\Pi + M + A + T}{\Pi + M + A + T + U} 100\%$$

где П — количество клеток, находящихся на стадии профазы; М — количество клеток, находящихся на стадии метафазы; А — количество клеток, находящихся на стадии анафазы; Т — количество клеток, находящихся на стадии телофазы; И — неделящиеся клетки, находящиеся на стадии интерфазы (Алов, 1965).

Статистическую обработку данных проводили по критерию Стьюдента.

Рис.1. Карто-схема расположения площадок биомониторинга

Автогранспортная зона: (пл. 9 - Змиевский проезд, пл. 10 – пр. Шолохова); Промышленная зона: (пл. 2-ТЭЦ; пл. 3 – ТЭЦ 2, ОАО ГПЗ – 10); Зоны, сочетающие промышленную и автотранспортную нагрузки (пл. 4 – ул. Портовая, пл. 5 ул. Сиверса; пл. 6 - пр.Буденовский, пер. Доломановский/ул. Текучева и Мечникова; пл. 7 - ул. Вавилова; пл. 8 - ул. Таганрогское шоссе); Парковая зона (пл. 1 относительный контроль - Ботанический сад)

Результаты и их обсуждение

В таблицах 1-3 представлены результаты оценки гено- и цитотоксичности экстракта пилезии многоцветковой, собранной на различных площадках г. Ростова-на-Дону в 2010-2012 гг.

Таблица 1

Уровень аберраций хромосом в корневой меристеме гороха посевного ($Pisum\ sativum\ L$), пророщенного на экстракте пилезии многоцветковой ($Pylaisia\ polyantha$) исследуемых площадок г. Ростов-на-Дону (2010 г.)

Площадка	Всего анафаз	Частота аберрантных анафаз(%)	Типы аберраций хромосом* (%)				
			A	В	С	Д	
фоновая	1000	$0,7 \pm 0,26$	15	35	20	30	

1		1,3±0,36*	12,5	35,9	-	31,3
(относительный	1000					
контроль)						
2	1000	2,0±0,44**	12,5	41,7	1	26,4
3	1000	2,4± 0,48**,+	12,0	21,9	27,8	29,3
4	1000	3,8±0,6***,++	15,39	38,46	46,15	-
5	1000	3,9±0,61***,++	18,75	25	31,25	25
6	1000	2,5±0,49**,+	25,6	25,6	27,3	13,7
7	1000	3,7±0,59*** ^{,++}	10	20	50	20
8	1000	3,0±0,54***, ⁺	22,7	19,3	32,2	25,8
9	1000	2,3±0,47**	12,5	25	25	37,5
10	1000	3,4±0,57***,++	17,1	25,2	30,1	22,7

^{*}достоверный уровень значимости относительно фона *P<0,05;**P<0,01;*** P<0,001; ⁺достоверный уровень значимости относительно относительного контроля P<0,05; ⁺⁺P<0,05; ⁺⁻P<0,01;

А-хромосомные и хроматидные мосты, В-одиночные фрагмены, С-множественные фрагменты, D-отставания

Автотранспортная зона: (№№9 - Змиевский проезд, 10 - пр. Шолохова); **Промышленная зона:** (№№2-ТЭЦ; 3 - ТЭЦ2, ОАО ГПЗ - 10); **Зоны, сочетающие промышленную и автотранспортную нагрузки**№№ 4 - ул. Портовая, 5 ул. Сиверса; 6 - пр.Буденовский, пер. Доломановский/ул. ТекучеваиМечникова; 7 - ул. Вавилова; 8 - ул. Таганрогское шоссе; **Парковая зона** (№ 1 относительный контроль - Ботанический сад)

Таблица 2 Уровень аберраций хромосом в корневой меристеме гороха посевного (*Pisum sativum L*),пророщенного на экстракте пилезии многоцветковой (*Pylaisia polyantha*)исследуемых площадок г. Ростов-на-Дону (2011 г.)

Площадка	-	Частота Типы аберраций хромосом					M [*]	
	Всего анафаз	аберрантных анафаз(%)	(%)					
			A	В	С	Д	Е	
фоновая	1000	$0,7 \pm 0,26$	12	25	25	25	13	
1		1,4±0,37*	12,5	35,9	-	31,3	20,3	
(относительный	1000							
контроль)								
2	1000	2,1±0,45**	12,5	41,7	-	26,4	19,4	
3	1000	2,5± 0,49**,+	12,0	21,9	27,8	29,3	9,0	
4	1000	3,8±0,6***,++	15,39	38,46	46,15	-	-	
5	1000	4,0±0,62***,++	18,75	25	31,25	25	-	
6	1000	2,7±0,51**,+	25,6	25,6	27,3	13,7	7,8	
7	1000	3,9±0,61***,++	10	20	50	20	-	
8	1000	3,0±0,54***,+	15,1	30,5	10,9	23,5	20	
9	1000	2,2±0,46**	12,5	25	25	37,5	-	
10	1000	3,4±0,57****	17,1	25,2	30,1	22,7	4,9	

^{*}достоверный уровень значимости относительно контроля *P<0,05;
P<0,01;* P<0,001;* $^+$ достоверный уровень значимости относительно относительного контроля $^+$ P<0,05;* $^+$ P<0,01;

А-хромосомные и хроматидные мосты, В-одиночные фрагмены, С-множественные фрагменты, D-отставания

Автотранспортная зона: (№№9 - Змиевский проезд, 10 — пр. Шолохова); Промышленная зона:(№№2-ТЭЦ; 3 — ТЭЦ 2, ОАО ГПЗ — 10); Зоны, сочетающие промышленную и автотранспортную нагрузки№№ 4 — ул.Портовая, 5 ул. Сиверса; 6 - пр.Буденовский, пер. Доломановский/ул. ТекучеваиМечникова; 7 - ул. Вавилова; 8 - ул. Таганрогское шоссе; Парковая зона(№ 1 относительный контроль - Ботанический сад)

Таблица 3

Уровень аберраций хромосом и величина митотического индекса в корневой меристеме гороха посевного ($Pisum\ sativum\ L$), пророщенного на экстракте пилезии многоцветковой ($Pylaisia\ polyantha$) исследуемых площадок г. Ростов-на-Дону 2012 г.)

Площадка	D	Частота аберрантных анафаз(%)	Типы аберраций хромосом*					
	Всего анафаз		(%)					
			A	В	С	Д	Е	
фоновая	1000	$0,7\pm0,26$	5	18	28	27	22	
1		1,5±0,38**						
(относительный	1000		17	30,1	7	20,5	25,4	
контроль)								
2	1000	2,2±0,46**	15,7	47,2	22,1		15	
3	1000	2,6±0,5**,+	38,9	18,8		28,2	14,1	
4	1000	4,1±0,63***,++	28,4	32,8	26	5,3	6,5	
5	1000	4,1±0,63***,++	40,9		39,1	20		
6	1000	2,8±0,52***,+	27,8	28,3	32,3		11,6	
7	1000	3,9±0,61***,++	12,6	55	18,4	14		
8	1000	3,0±0,54***,+	52	48				

9	1000	2,4±0,48**	15	20	30		35
10	1000	3,6±0,59****	25	12	15	28	20

^{*}достоверный уровень значимости относительно контроля *P<0.05; **P<0.01; *** P<0.001; *достоверный уровень значимости относительно относительного контроля P<0.05; *P<0.01;

А-хромосомные и хроматидные мосты, В-одиночные фрагмены, С-множественные фрагменты, D-отставания

Автотранспортная зона: (№№9 - Змиевский проезд, 10 — пр. Шолохова); Промышленная зона:(№№2-ТЭЦ; 3—ТЭЦ 2, ОАО ГПЗ—10); Зоны, сочетающие промышленную и автотранспортную нагрузки№№ 4—ул.Портовая, 5 ул. Сиверса; 6 - пр.Буденовский, пер. Доломановский/ул. ТекучеваиМечникова; 7 - ул. Вавилова; 8 - ул. Таганрогское шоссе; Парковая зона(№ 1 относительный контроль - Ботанический сад)

Экстракт пилезии многоцветковой исследуемых площадок г. Ростова-на-Дону индуцировал уровень аберраций хромосом, достоверно превышающий контрольные и фоновые значения. Наибольший процент аберраций хромосом на протяжении трех лет исследования индуцировал экстракт пилезии многоцветковой в Ленинском, Железнодорожном, Октябрьском районах. Минимальное превышение уровня аберраций хромосом по сравнению с точкой относительного контроля достигало 1,5 раз, максимальное – 3 раза. Превышение фоновых значений составило от 2,1 до 7 раз. Показатели уровня аберраций хромосом в различных точках на протяжении 3-х лет исследования оставались стабильными.

На рисунках 1-3 представлены спектры аберраций хромосом в корневой меристеме гороха посевного, пророщенного на экстракте пилезии многоцветковой (*Pylaisia polyantha*) исследуемых площадок г. Ростова-на-Дону в 2010-2012 гг.

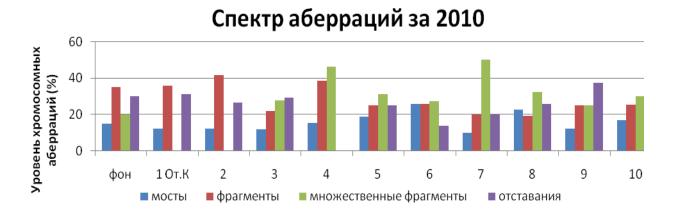


Рис.11. Спектр аберраций хромосом в корневой меристеме гороха посевного, пророщенного на экстракте пилезии многоцветковой (*Pylaisiapolyantha*) (2010 г.)

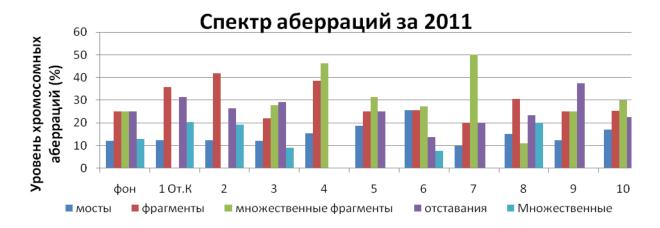


Рис.2. Спектр аберраций хромосом в корневой меристеме гороха посевного, пророщенного на экстракте пилезии многоцветковой (*Pylaisiapolyantha*) (2011 г.)

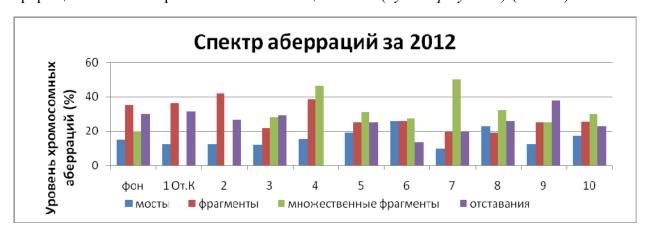
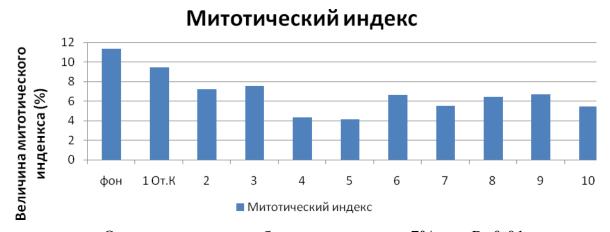



Рис.3. Спектр аберраций хромосом в корневой меристеме гороха посевного, пророщенного на экстракте пилезии многоцветковой (*Pylaisiapolyantha*) (2012 г.)

Автотранспортная зона: (№№9 - Змиевский проезд, 10 — пр. Шолохова); Промышленная зона: (№№2-ТЭЦ; 3—ТЭЦ 2, ОАО ГПЗ—10); Зоны, сочетающие промышленную и автотранспортную нагрузки №№ 4—ул.Портовая, 5 ул. Сиверса; 6 - пр.Буденовский, пер. Доломановский/ул. Текучеваи Мечникова; 7 - ул. Вавилова; 8 - ул. Таганрогское шоссе; Парковая зона (№ 1 относительный контроль - Ботанический сад)

При анализе спектра аберраций хромосом в корневой меристеме гороха посевного особое внимание было уделено районам г. Ростова-на-Дону, где многоцветковой пробы пилезии показали наибольшую степень Ленинском районе в 2010-2011 гг. стабильно генотоксичности. Так, в встречались множественные и одиночные фрагменты, а также отставания. В 2012 г. к этому списку добавились мосты, количество которых достоверно превышало количество всех других ТИПОВ аберраций хромосом. Железнодорожном районе в 2010-2011 гг. наибольший процент аберраций хромосом приходился на одиночные и множественные фрагменты, а в 2012 г. увеличилось количество мостов. В Октябрьском районе на протяжении 3-х стабильно встречались множественные и одиночные фрагменты, отставания и мосты. В 2012 г. увеличилось количество одиночных фрагментов.

Оценка цитотоксического эффекта экстракта пилезии многоцветковой проводилась в 2012 г. (рис. 4)

Относительная ошибка не превышала 7% для Р<0,01

Рис.15.Показатели митотического индекса в корневой меристеме гороха пророщенного на экстракте пилезии многоцветковой (*Pylaisia polyantha*) исследуемых площадок г. Ростов-на-Дону

Автотранспортная зона: (пл. 9 - Змиевский проезд, пл. 10 – пр. Шолохова); Промышленная зона: (пл. 2-ТЭЦ; пл. 3 – ТЭЦ 2, ОАО ГПЗ – 10); Зоны, сочетающие промышленную и автотранспортную нагрузки (пл. 4 –ул.Портовая, пл. 5 ул. Сиверса; пл. 6 - пр.Буденовский, пер. Доломановский/ул. Текучева и Мечникова; пл. 7 - ул. Вавилова; пл. 8 - ул. Таганрогское шоссе); Парковая зона (пл. 1 относительный контроль - Ботанический сад)

Снижение показателей митотического индекса в корневой меристеме гороха в опыте по сравнению с контролем говорит о наличие цитотоксического эффекта гомогената пилезии многоцветковой. Наибольшее угнетение митоза характерно для проб из Ленинского, Железнодорожного и Первомайского районов.

Выводы

Гено- и цитотоксический эффект пилезии многоцветковой, как результат аккумуляции мутагенных факторов из атмосферного воздуха и атмосферных осадков, является объективным показателем, отражающим генотоксическую опасность анализируемых площадок. Использование данного показателя при многолетнем биомониторинге позволяет получить важную информацию о мутагенной опасности атмосферного воздуха районов исследований, может осуществляться с любой периодичностью.

Максимальный цито- и генотоксический эффект экстракта пилезии многоцветковой зафиксирован в зонах г. Ростова-на-Дону, сочетающих промышленную и автотранспортную нагрузки.

Работа проводилась при финансовой поддержке Министерства образования и науки Российской Федерации (14.515.11.0055).

Литература

- 1. Капралова О.А. Влияние урбанизации на эколого-биологические свойства почв г.Ростова-на-Дону [Электронный ресурс] // Инженерный Вестник Дона. 2011. №4. Режим доступа: http://www.ivdon.ru/magazine/archive/n4y2011/594 (доступ свободный) Загл. с экрана. Яз. рус.
- 2. Зерщикова М.А. Последствия загрязнения окружающей среды и их влияние на экономические показатели (методы сохранения и

- улучшения состояния окружающей среды) [Электронный ресурс] // Инженерный Вестник Дона. 2011. № 1. Режим доступа: http://www.ivdon.ru/magazine/archive/n1y2011/326 (доступ свободный) Загл. с экрана. Яз. рус.
- 3. Manning, W. J., Feder, W. A., Biomonitoring air pollutants with plants [Tekct] // Applied Science Publishers Ltd., London, 1980, pp 1-135.
- 4. Mehran Hoodaji, Mitra Ataabadi and Payam Najafi. Biomonitoring of Airborne Heavy Metal Contamination [Электронный ресурс] // Air Pollution Monitoring, Modelling, Health and Control, 21, March, 2012. Режим доступа: http://www.intechopen.com/books/air-pollution-monitoring-modelling-health-and-control/biomonitoring-of-airborne-heavy-metal-contamination (доступ свободный) Загл. с экрана. Яз. англ.
- 5. Гуськов Е. П. Шкурат Т. П., Вардуни Т. В. Тополь как объект для мониторинга мутагенов в окружающей среде [Текст] // Цитология и генетика. 1993.- Т. 27, № 1. С. 52- 55.
- 6. Гуськов Е. П., Вардуни Т. В., Шкурат Т. П., Милютина Н. П., Мирзоян А.В. Свободно-радикальные процессы и уровень аберраций хромосом в листьях древесных растений как тест-система на генотоксичность городской среды [Текст] // Экология. 2000.- №4. С. 270-275.
- 7. Буторина А.К., Калаев В.Н. Анализ чувствительности различных критериев цитогенетического мониторинга *Zebrina pendula Schnizl* [Текст] // Экология. 2000. N3. C.206-210.
- 8. Мануйлов И. М., Багдасарян А. С. Использование растительных тест—объектов для изучения влияния недифференцированных мутагенов [Текст] // Материалы межрегиональной научно—практической «Образование, здоровье и культура в начале XXI века». —Ставрополь, 2004.-С. 100—102.
- 9. Неверова О. А., Николаевский В. С. Лихенометрический способ индикации загрязнения атмосферного воздуха урбанизированной

- среды [Текст] // Экология большого города. М.: Прима, 2002. С. 178–181.
- 10. Неверова О. А., Колмогорова Е. Ю. (а). Ксерофитизация листьев древесных растений как показатель загрязнения атмосферного воздуха (на примере г. Кемерово) [Текст] // Лесной журн. (Изв. вузов). 2002. № 3. С. 29 –33.
- 11. Королева Ю. В. Биоиндикация атмосферных выпадений тяжелых металлов на территории Калининградской области [Текст] // автореф. Дис., 2009. С. 157.
- 12. Белоусов М.В. Влияние тяжелых металлов на цитогенетическую изменчивость сосны обыкновенной. [Текст] // автореф. дис. канд. Воронеж,2011.- С 24.
- 13. Рыжакова Н.К., Рогова Н.С., Борисенко А.Л., Меркулов В.Г. Способ оценки загрязнения атмосферного воздуха тяжелыми металлами и другими химическими элементами с помощью эпифитных мхов. [Текст] // Патент на изобретение № 2463584. Бюл. №28.
- 14. Шматова Л. М. Бриоиндикация состояния лесных экосистем района опасных техногенных объектов [Текст] // автореферат, 2012. С. 23.