Экспериментальное исследование проходного детектора

A.В. $Aндрианов^{1}$, Д.Е. Γ убарев 1 , A.Н. $3икий^{2}$

 1 Таганрогский научно-исследовательский институт связи, Таганрог 2 Южный Федеральный Университет, Таганрог

Аннотация: Описаны схема и конструкция детектора, работающего в диапазоне рабочих частот не менее чем от 1 до 1250 МГц. Проведено экспериментальное исследование частотной зависимости чувствительности по напряжению $\mathbf{B}_{\mathbf{u}}$, а также амплитудная характеристика на четырех частотах. Показано, что детектор обладает высокой равномерностью частотной характеристики и может быть использован в измерительной и приёмно-передающей аппаратуре.

Ключевые слова: проходной детектор, чувствительность по напряжению, амплитудная характеристика, неравномерность чувствительности по напряжению.

Проходные детекторы находят применение в измерителях проходящей мощности, в измерителях частотных характеристик, в цепях контроля приёмно-передающей аппаратуры, поэтому их исследование является актуальным [1-5].

Объектом исследования в данной работе является проходной детектор из комплекта прибора X1-42. К нему предъявляются следующие требования [6,7]:

- диапазон рабочих частот от 1 до 1250 МГц;
- чувствительность по напряжению В_м ≥ 50 мв/мВт;
- неравномерность чувствительности в диапазоне рабочих частот не более ± 0.5 дБ;
 - волновое сопротивление входа 50 Ом;
 - типовое сопротивление нагрузки 1 кОм;
- динамический диапазон сигналов на входе детектора не менее 30-40 дБ.

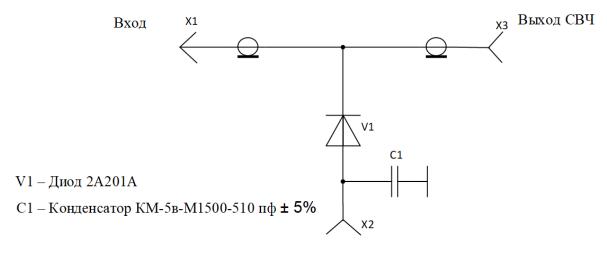

Схема и конструкция

Схема детектора приведена на рис. 1. Фото детектора со снятой крышкой показано на рис. 2.

Детектор состоит из вилки и розетки типа III по ГОСТ13317, соединенных между собой на печатной плате из стеклотекстолита. К точке их соединения припаян катодом детекторный диод. Анод детекторного диода соединен сбайонетным выходом и блокировочным конденсатором.

Минимальная длина проводников позволяет детектору работать в диапазоне рабочих частот от 1 до 1250 МГц с высокой равномерностью.

Эксперимент проводился на установке, структурная схема которой изображена на рис. 3. В качестве источника сигнала используется генератор стандартных сигналов типа ГСВЧ — 3000 в режиме НГ. В качестве индикатора выходного сигнала применён цифровой осциллограф с входным сопротивлением 1 МОм. Для приближения условий испытаний к реальным условиям эксплуатации между выходом детектора с входом осциллографа установлена нагрузка 1,1 кОм. Свободный выход проходного детектора нагружен на согласованную нагрузку 50 Ом для обеспечения режима бегущей волны на входе детектора. Пределы измерений по диапазону частоты и входных мощностей определялись возможностями используемой измерительной аппаратуры (генераторы ГСВЧ-3000 и Г4-218/1).

Выход детектора

Рис. 1. Принципиальная схема детектора

Рис. 2. Детектор проходной со снятой крышкой (из комплекта X1-42)

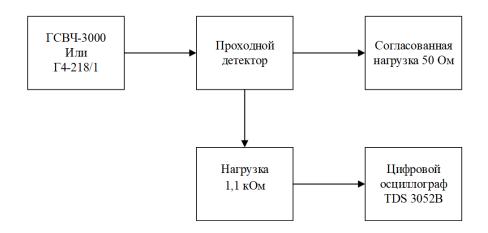


Рис. 3. Структурная схема измерительной установки

Таблица 1 Частотная характеристика детектора

Частота сигнала МГц	Выходное напряжение	Выходное напряжение	
	при Рвх=100мкВт, мВ	при Рвх=1мВт, мВ	
100	-5,61	-66,3	
200	-5,15	-65,3	
300	-5,28	-64,5	
400	-5,71	-62,7	
500	-5,03	-63,5	

600	-5,83	-63,1
700	-5,54	-67,1
800	-6,06	-65,5
900	-5,83	-67,6
1000	-6,25	-66,7
1100	-5,74	-66,8
1200	-6,91	-68,4
1300	-6,30	-70,6
1400	-6,81	-71,5
1500	-7,50	-76,1
1600	-7,32	-76,5
1700	-8,46	-80,2
1800	-7,49	-78,8
1900	-8,42	-77,3
2000	-9,20	-85,2
2100	-8,76	-82,2
2200	-10,4	-93,0
2300	-9,18	-81,9
2400	-10,9	-92,5
2500	-9,53	-86,5
260	-9,8	-84,1
2700	-12,4	-101
2800	-11,5	-98,3
2900	-11,6	-99,1
3000	-10,6	-95,5

Таблица 2 Амплитудные характеристики детектора

Рвх, дБм	Uвых, мВ на	U вых, мВ на	U вых, мВ на	U вых, мВ на
	f=100 МГц	f=500 МГц	f=1000 МГц	f=2000 МГц
-20	-1,61	-1,52	-1,65	-1,94
-18	-1,78	-1,77	-1,94	-2,40
-16	-2,16	-2,04	-2,32	-3,01
-14	-2,84	-2,62	-3,01	-3,93
-12	-3,84	-3,48	-4,13	-5,56
-10	-5,60	-5,05	-6,23	-9,14
-8	-8,75	-7,66	-9,62	-14,0
-6	-14,7	-13,1	-16,1	-23,4
-4	-24,7	-21,9	-26,0	-35,7
-2	-40,5	-39,5	-42,5	-58,2
0	-75,8	-72,9	-65,6	-84,1
2	-115	-110	-94,2	
4	-166	-159	-139	
6	-233	221	-195	
8	-316	301	-265	
10	-424	402	-355	
12	-555	-525	-467	
	1	I		ı

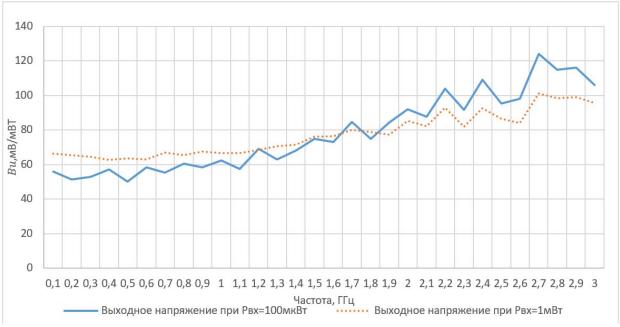


Рис. 4. Частотные характеристики проходного детектора

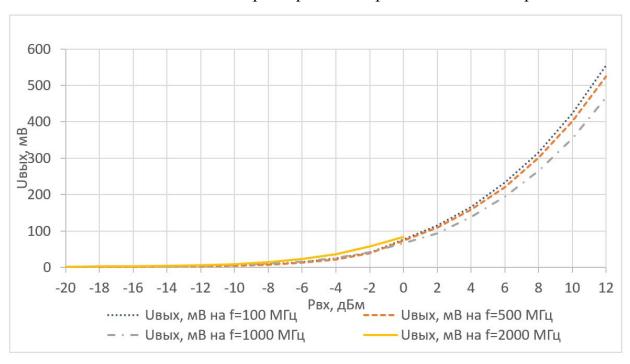


Рис. 5. Амплитудные характеристики проходного детектора

Неравномерность чувствительности рассчитывалась по формуле (1):

$$\Delta B_u = 20 \lg \frac{B_u max}{B_u min} \tag{1}$$

Более высокочастотный проходной детектор описан в [8]. Проходные детекторы с большим динамическим диапазоном (до 23дБм) описаны в [9]. Они имеют диапазон рабочих частот от 0,01 до 50 ГГц. При проведении данного исследования были полезны работы [10,11].

Выводы

Сравнение паспортных данных детектора и его экспериментально снятых параметров приведено в таблице 3.

Таблица 3 Параметры детектора

Наименование параметра, размерность	По паспорту	Измерено	
Диапазон рабочих частот, МГц	1 - 1250	100-3000	
Чувствительность по напряжению $\boldsymbol{\mathcal{B}}_{\boldsymbol{u}}$, мВ/мВт при		От 50 до 124	
Rн = 1 кОм			
Входное сопротивление, Ом	50	50	
Неравномерность чувствительности ΔB_{ω} в	± 0,5 дБ	1,054 дБ	
полосе частот 1250 М Γ ц при $P_{BX} = 1 \text{ MBT}$			
Неравномерность чувствительности ΔB_{u} в полосе частот 1250 МГц при	-	2,79 дБ	
$P_{BX} = 100 \text{ MkBt}$			
Неравномерность чувствительности ΔB_{ω} в	-	4,23 дБ	
полосе частот 3000 М Γ ц при $P_{BX} = 1 \text{ MBT}$			
Неравномерность чувствительности ΔB_{u} в	-	7,8 дБ	
полосе частот 3000 МГц при Рвх = 100 мкВт			
Динамический диапазон мощностей входного сигнала, дБ	-	30	

Литература

- 1.Бутков В.П., Губарев Д.Е., Зикий А.Н., Зламан П.Н. Серийные детекторы СВЧ (Обзор) // Инженерный вестник Дона, 2017, №1. URL:ivdon.ru/ru/magazine/archive/n1y2017/4032.
- 2. Губарев Д.Е., Зикий А.Н., Зламан П.Н., Мамченко С.О. Детекторы СВЧ фирмы АЭРОФЛЕКС. Инженерный вестник Дона, 2017, №4. URL:ivdon.ru/ru/magazine/archive/n4y2017/4409.
- 3. Бутков В.П., Зикий А.Н., Зламан П.Н. Сверхширокополосный детектор. Электротехнические и информационные комплексы и системы. 2014, №2, том 10, с. 111-116.
- 4. Радиоизмерительная аппаратура СВЧ и КВЧ. Узловая и элементная базы. Под ред. А.М. Кудрявцева М.: Радиотехника, 2006. 208с.
- 5. Загородний А.С. Измерители мощности сигналов СВЧ и КВЧ диапазонов на основе диодных детекторов. Диссертация на соискание ученой степени к.т.н. Томск, ТУСУР, 2014. 120с.
- 6. X1-42. Прибор для исследования амплитудно-частотных характеристик. Альбом электрических схем. 39 с.
- 7. Прибор для исследования AЧX X1-42. Техническое описание и инструкция по эксплуатации. 1.400.132TO. 130c.
- 8. Сокол И.И., Гольдберг Л.А. Согласованная детекторная секция СВЧ. A.C. СССР № 1.483.389, м. кл. GO1R 21/12. Опубл. 30.05.89.
 - 9. Диоды и диодные МИС. Каталог АО «Микран». Томск, 2016, 36с.
- 10. Keysight Technologies. Fundamentals of RF and microwave Power Measurements (Part2). Power Sensors and Instrumentation. Application Note. Published in USA, 2014-60p.

11. AG314. Principles, Applications and Selection of Receiving Diodes. M/A-Com, 2017- 70p.

References

- 1.Butkov V.P., Gubarev D.E., Zikij A.N., Zlaman P.N. Inženernyj vestnik Dona (Rus), 2017, №1. URL:ivdon.ru/ru/magazine/archive/n1y2017/4032.
- 2. Gubarev D.E., Zikij A.N., Zlaman P.N., Mamchenko S.O. Inženernyj vestnik Dona (Rus), 2017, №4. URL:ivdon.ru/ru/magazine/archive/n4y2017/4409.
- 3. Butkov V.P., Zikij A.N., Zlaman P.N. Sverhshirokopolosnyj detektor. EHlektrotekhnicheskie iinformacionnye kompleksy isistemy [Ultra-wideband detector. Electrical and information systems and systems]. 2014, №2, tom 10, p. 111-116.
- 4. Radioizmeritel'naya apparatura SVCH i KVCH. Uzlovaya i ehlementnaya bazy [Radio equipment, SHF and EHF. Node and element bas]. Pod red. A.M. Kudryavceva M.: Radiotekhnika, 2006. 208 p.
- 5. Zagorodnij A.S. Izmeriteli moshchnosti signalov SVCH i KVCH diapazonov na osnove diodnyh detektorov. Dissertaciya na soiskanie uchenoj stepeni k.t.n. [Measuring the signal power of the microwave and EHF ranges based on diode detectors. Thesis for the degree of candidate of technical Sciences]. Tomsk, TUSUR, 2014. 120 p.
- 6. H1-42. Pribor dlya issledovaniya amplitudno-chastotnyh harakteristik. Al'bom ehlektricheskih skhem [The device for the study of amplitude-frequency characteristics. Electrical schematics album]. 39 p.
- 7. Pribor dlya issledovaniya ACHKH X1-42. Tekhnicheskoe opisanie i instrukciya po ekspluatacii [The device for the study of frequency response X1-42. Technical description and instruction manual]. 1.400.132TO. 130 p.

- 8. Sokol I.I., Gol'dberg L.A. Soglasovannaya detektornaya sekciya SVCH [A coherent detection section of the microwave]. A.S. SSSR № 1.483.389, m. kl. GO1R 21/12. Opubl. 30.05.89.
- 9. Diody i diodnye MIS. Katalog AO «Mikran» [Diodes and diode-MISS]. Tomsk, 2016. 36 p.
- 10. Keysight Technologies. Fundamentals of RF and microwave Power Measurements (Part2). Power Sensors and Instrumentation. Application Note. Published in USA, 2014-60p.
- 11. AG314. Principles, Applications and Selection of Receiving Diodes. M/A-Com, 2017. 70p.