Материалы для 3D-печати: реферативный обзор патентов

Олег Фиговский, Нелли Бланк

Israel Association of Inventors, Haifa. Israel

Аннотация: В мире новых технологий 3D-печать стала одним из наиболее инновационных направлений. Запатентовано в мире 2614 патентов результатов по материалам для 3D-печати. Анализ патентной активности компаний показывает, что General Electric подала больше всего патентов на 3D-печать.

Ключевые слова: материалы для 3d-печати, обзор патентов.

Основная цель технологий аддитивного производства обеспечить более высокопроизводительных, совершенных производство Таким образом, разработка новых и более совершенных материалов является основным элементом в развитии технологий АМ. Это происходит в обоих направлениях: разработка и оптимизация современных материалов для 3D-печати позволяет ускорить обработку и создавать более сложные детали; в то же время развитие процессов 3D-печати зависит от более совершенных все материалов ДЛЯ более оптимизации высокопроизводительных деталей. В целом, под передовыми материалами в отрасли понимают все материалы, находящиеся на грани материаловедения. К относятся композиты, высокопроизводительные полимеры, ним высокотемпературные техническая керамика. металлы И

В мире производства и технологий 3D-печать стала одним из самых инновационных и захватывающих направлений. Благодаря своей способности создавать сложные конструкции и прототипы с высокой скоростью и точностью 3D-печать производит революцию в отраслях по всему миру. Ожидается, что в 2024 году эта технология достигнет новых высот благодаря достижениям в таких материалах, как нить и смола PLA, а также улучшениям в возможностях 3D-принтеров. Одной из основных тенденций, которая может сохраниться в 2024 году, является более широкое использование металлических материалов в 3D-печати. Металлическая 3D-печать набирает обороты благодаря своей способности производить прочные, долговечные детали, которые могут выдерживать высокие температуры и давление. Это делает ее идеальной для таких отраслей, машиностроение, медицина, аэрокосмическая промышленность, автомобилестроение и военная промышленность, и мы ожидаем увидеть еще больше отраслей, работающих с этими материалами в ЭТОМ году, включая ювелирную промышленность.

Область 3D-печати материалов ДЛЯ c металлическим наполнителем стремительно развивается, при этом для создания высокопрочных, долговечных деталей используются различные металлы. Одним ИЗ наиболее распространенных металлов, используемых в 3D-печати, является титан, известный своей прочностью и малым весом, что делает его идеальным для аэрокосмической и автомобильной промышленности. Нержавеющая сталь является еще одним популярным выбором из-за своей коррозионной стойкости и долговечности, часто используемым в промышленных и медицинских целях. Алюминий, известный своей легкостью и теплопроводностью, также часто используется, особенно в автомобильной и электронной промышленности.

Композиты, используемые в АМ, в основном представляют собой композиты из углеродного волокна, стекловолокна или кевлара в термопластичной матрице (в отличие от традиционных композитов, которые находятся в термореактивной матрице). Они могут быть доступны в виде порошков, гранул или нитей, а также обычно используемых рубленых волокон (хотя технологии, способные производить композиты из непрерывного волокна методом аддитивного производства, находятся в стадии разработки). Однако определение композитов чрезвычайно широко и может распространяться на металлические композиты, полимерно-керамические композиты и даже металлокерамические композиты.

Передовые материалы в АМ также включают высокопроизводительные полимеры, особенно РЕЕК, РЕКК и РЕІ (ULTEM). Это высокотемпературные, устойчивые к высоким напряжениям термопластики, которые плавятся при температуре 400 °C. Ожидается, что возможность 3D-печати с использованием этих материалов для ряда медицинских и металлозамещающих промышленных применений значительно повысит спрос на аддитивное производство. Передовые материалы в керамической 3D-печати представлены в основном технической керамикой, такой как оксид алюминия, диоксид циркония и другие неоксидные и керамические материалы на основе кремния, такие как карбид нитрид кремния. Эти материалы обладают непревзойденными свойствами с точки зрения термостойкости, прочности и легкости, однако их трудно формовать с использованием традиционных технологий. Вот почему они считаются особенно актуальными для будущего AM.

Мы нашли много различных материалов для запатентованных технологий 3D-печати. Около 2614 результатов найдено в базе данных Worldwide для: материалов для 3D-печати — см. ниже.

US2024269930 (A1)

В настоящем патенте раскрыт процесс 3D-печати материалом с низкой вязкостью для производства 3D-печатного изделия, причем процесс включает следующие этапы: а) предоставление программного обеспечения для перемещения печатающей головки относительно печатаемого изделия; b) перемещение печатающей головки относительно печатаемого изделия в соответствии с программным обеспечением, так что изделие печатается

послойно в нескольких слоях, каждый из которых имеет область изделия; с) по крайней мере для некоторых слоев печать первого материала только на первой части области изделия и печать второго материала только на второй части области изделия, отличной от первой области; и при этом первый материал является самоподдерживающимся, чтобы обеспечить ограждение для второго материала, который является материалом с низкой вязкостью, по существу не самоподдерживающимся, первоначальной печати, который при образующим предпочтительно самособирающимся материалом, является самоподдерживающееся изделие после созревания, так ЧТО первый поддерживающий материал затем может быть удален при необходимости.

US2024272613 (A1)

Метод, система и компьютерный программный продукт генерируют план размещения для печати трехмерных (3D) объектов и предоставляют план размещения контроллеру 3D-принтера. Генерация плана размещения включает получение на компьютеро-реализуемом модуле проектирования виртуальной модели, представляющей объекты, и выбор материала объекта для печати объектов. Генерация плана размещения также включает в себя, с помощью модуля проектирования, выбор на основе материала объекта и виртуальной модели изоляционного материала, который должен быть нанесен на смежные поверхности объектов, и создание виртуальной модели расположения объектов и изоляционного материала. Контроллер 3D-принтера дает команду 3D-принтеру на печать расположения объектов и изоляционного материала в соответствии с планом размещения.

US2024257447 (A1)

Способ создания трехмерной (3D) печати включает в себя изменение множества цифровых материалов 3D цифровой модели с измененным освещением для создания 3D цифровой модели с измененными материалами на основе множества моделируемых характеристик; изменение одного или нескольких параметров модели 3D цифровой модели с измененными материалами для создания 3D цифровой модели с измененными параметрами; и преобразование взаимодействия между измененным цифровым освещением и измененным цифровым материалом в 3D цифровой модели с измененными параметрами для создания преобразованной 3D цифровой модели.

US2024208142 (A1)

В настоящем патенте представлены процессы трехмерной (3D) печати, аппараты, программное обеспечение, устройства и системы для производства по крайней мере одного 3D-объекта, напечатанного в цикле печати. Например, 3D-принтер. описанный здесь 3D-принтер может способствовать безопасной и точной печати 3D-объектов, например, при создании из реактивных исходных материалов. 3D-принтер (например, включающий камеру обработки или модуль сборки) может сохранять требуемую (например, инертную) атмосферу вокруг

слоя материала и/или 3D-объекта во время печати, например, в нескольких циклах 3D-печати. 3D-принтер может включать один или несколько модулей сборки, которые могут иметь контроллер, отдельный от контроллера камеры обработки. 3D-принтер может включать платформу, которая может быть автоматически сконструирована. 3D-печать может происходить в течение длительного времени (например, много слоев и/или один или несколько циклов печати) без вмешательства оператора и/или простоя

CN118206366 (A)

Изобретение раскрывает приготовления широкополосной способ детали волнопрозрачной керамической специальной формы, содержащей микроструктуру, относится к технической области волнопрозрачной И керамики. Решена заключающаяся проблема, В TOM, существующему способу 3D-печати широкополосная волнопрозрачная деталь специальной формы с консольной структурой с большим углом наклона трудно напечатать через многофазный волнопрозрачный керамический материал в 3Dрежиме. Способ включает следующие этапы: 1 взвешивание 3D-печати; 3 3D-печать и сырья; 2 подготовка керамического сырья ДЛЯ Способ используется 4 обезжиривание и спекание. ДЛЯ приготовления широкополосной волнопрозрачной керамической детали специальной формы, содержащей микроструктуру.

EP4414158 (A2)

Настоящее изобретение относится к способу изготовления трехмерных (3D) объектов с использованием системы аддитивного производства, в которой материал детали содержит полимерный компонент, содержащий по меньшей мере один полимер поли (эфирэфиркетон) (РЕЕК) со средневесовой молекулярной массой (Мw) в диапазоне от 75 000 до 100 000 г/моль (как определено с помощью ГПХ), например, в форме нитей или сферических частиц, для использования в системах аддитивного производства для печати 3D-объектов.

CA3182227 (A1)

Изобретение касается способа изготовления невспененной нити. Способ включает этапы: а) предоставления по меньшей мере одного полимерного материала и вспенивающего агента с заданной температурой начала активации, причем полимерный материал имеет температуру плавления и обработки ниже температуры начала активации вспенивающего агента, b) смешивания расплава полимерного материала и вспенивающего агента при температуре выше температуры плавления полимерного материала и ниже температуры начала активации вспенивающего агента, чтобы сформировать смесь, содержащую полимерный материал и вспенивающий агент, причем смесь плавится до тех пор, пока указанная смесь не образует расплавленную композицию на основе одновременно экструдирования полимера, c) c этапом b) vказанной расплавленной композиции на основе полимера для формирования нитей. Использование разработанных нитей обеспечивает 3D-печать легких деталей с уменьшением веса до 80%. Эта технология улучшает текучесть материала на этапе 3D-печати, и можно печатать на 3D-принтере средние и высоковязкие сорта. Это позволяет использовать более высокие значения высоты слоя, что приводит к сокращению времени печати и снижению конечной стоимости производства.

CN117969216 (A)

Изобретение раскрывает способ подготовки образца горной породы столбчатосочлененной горной массы на основе 3D-печати, и способ включает следующие этапы: получение геометрических характеристик столбчато-сочлененной горной массы и построение столбчато-сочлененной сетевой модели и цилиндрической основе геометрических характеристик; после модели цилиндрической модели получается цилиндрическая сочлененная горная масса трехмерной модели в сочетании с цилиндрической сочлененной сетевой моделью, и генерируется информация для печати; и на основе информации для используется принтер с двумя соплами ДЛЯ печати отпечатанный образец подвергается обработке отжигом, и подготовка образца горной породы столбчато-сочлененной горной массы завершается. Технология 3D-печати используется для подготовки образца горной породы столбчатосочлененной горной массы, способ работы прост, образец прозрачен или полупрозрачен и хорошо виден, образец формируется за один раз, и по сравнению с традиционными смоляными и пластиковыми материалами, принятыми в 3D-печати методом наплавления, механические свойства образца ближе к реальным свойствам горного материала. Между тем, метод является ресурсосберегающим. экологически чистым

US2024131794 (A1)

настоящем патенте представлены способы формы, изготовления включающие: (а) применение одного или нескольких входных параметров для определения влияния на ограничения процесса при изготовлении сплошной сетки; (b) печать блока микроструктурированного материала; (c) определение пористости блока: (d) определение возможности печати микроструктурированного материала; (е) определение параметров архитектуры формы на основе входных параметров сплошной сетки; (f) печать формы, в которой возможность заключается в возможности печати сплошной сетки без засорения сплошной сетки; в которой, если микро структурированный материал оказывается невозможным на этапе (d), входные параметры сплошной сетки (b)-(d)корректируются, a этапы повторяются.

US2024131800 (A1)

В настоящем патенте раскрыто вычислительное устройство, включающее контроллер. Контроллер должен получать доступ к данным печати

виртуального объема сборки, включая 3D-объект, который должен быть сгенерирован 3D-принтером; изменять данные печати для включения 3D-структуры в местоположении внутри объема сборки для инкапсуляции количества строительного материала; получать данные о деградации порошка, соответствующие деградации порошка инкапсулированного количества строительного материала; и калибровать параметр аддитивного производства на основе данных о деградации порошка.

WO2024081403 (A1)

Термостабильная водорастворимая полимерная композиция включает по меньшей мере один водорастворимый полимер и по меньшей мере один армирующий наполнитель. Термостойкие водорастворимые полимерные композиции, включающие по меньшей мере один водорастворимый полимер и по меньшей мере один армирующий наполнитель, могут решать несколько проблем аддитивного производства: такие композиции могут растворяться или распадаться в воде при нейтральном рН, могут быть совместимы как с гидрофильными, так и с гидрофобными полимерами и могут использоваться в качестве вспомогательного материала при температурах в камере сборки не менее около 180 °C, имеют модуль упругости при температурах в камере печати выше 1 х 106 Па и легко удаляются (растворяются/распадаются) после печати при этой температуре в камере сборки в течение не менее 24 часов. Все это может быть желательно, например, при 3D-печати высокотемпературными конструкционными термопластиками.

JP2024043226 (A)

Для обеспечения формовочного материала для 3D-принтера для изготовления формованного изделия, которое имеет биоразлагаемость, слабый запах и свойство прозрачности/обработки поверхности превосходное сглаживания и покрытия) и формуемость, и связанная с этим технология. РЕШЕНИЕ: В формовочном материале для 3D-принтера смешивают 70-80 масс.% пластификатора. 20-30 ацетата целлюлозы изготовления формовочного материала для 3D-принтера включает этапы: непрерывного распыления или периодического введения пластификатора при перемешивании гранулированного материала ацетата целлюлозы формирования пластификатора в смесь; оставления смеси при нормальной температуре на 8 часов или дольше; и установки смеси при температуре вязкого течения замешивания И смеси.

JP2024043230 (A)

получения композиции ацетата целлюлозы, которая отличается превосходной стабильностью механической прочностью размерной формованного изделия и подходит для формования крупногабаритного формованного изделия, а также методики ее применения. Решение: Композиция ацетата целлюлозы содержит, по отношению к 100 мас.ч. от общего количества компонента смолы, состоящего из 60-85 мас.% ацетата целлюлозы (А) и 15-40 мас.% пластификатора (В), 5-80 мас.ч. наполнителя (С) титаната калия.

CN117777405 (A)

Изобретение раскрывает отверждаемую ультрафиолетом смолу для 3D-печати, отверждаемая ультрафиолетом смола для 3D-печати включает акрилатный светочувствительный преполимер, содержащий динамическую ковалентную связь, и олигомер, содержащий реактивный водород, структура акрилатного светочувствительного преполимера, содержащего динамическую ковалентную связь, представляет собой # imgabs0 #, R1 представляет собой # imgabs1 # R2 представляет собой водород или метил, а R2 представляет собой водород или метил. R представляет собой остаточную группу после того, как полиизоцианат теряет две NCO; изобретение также раскрывает способ получения и применения отверждаемой ультрафиолетом смолы для 3D-печати, и способ применения включает следующие этапы: (1) взятие отверждаемой ультрафиолетом смолы для 3D-печати в качестве сырья и приготовление отвержденного светом образца путем принятия отверждаемой светом 3D-печати; и (2) проведение термической обработки фотоотвержденного образца в среде 80-150 °C в течение 6-24 часов. Смола, предлагаемая изобретением, может сохранять высокий модуль в процессе печати, а после завершения печати смола становится низкомодульным материалом посредством простой последующей обработки, так что проблема, заключающаяся в том, что материал со сверхнизким модулем неудобен для печати, решается, и выход печати низкомодульного материала значительно улучшается.

WO2024182309 (A1)

3D-принтеры выполняют аддитивное производство путем нанесения нагретого материала (обычно пластика) на поверхность из сопла принтера. Этот пластик может иметь множество форм, включая нить и гранулы, и не все типы головок 3D-принтера подходят для печати всеми типами пластика. Более того, некоторые материалы больше подходят для 3D-печати с определенными разрешениями. В настоящем патенте описаны варианты головки 3D-принтера с несколькими типами печатающих головок, сконфигурированных на одной головке. Благодаря использованию различных печатающих головок, которые печатают материалами различной грубости и тонкости, одна головка может печатать с использованием нескольких различных материалов с различными разрешениями 3D-печати. Она также обладает механизмом против просачивания для уменьшения ошибок во время печати и выдвигает или убирает определенные печатающие головки, когда они не используются во 3D-печати. время

US2024083117 (A1)

Метод печати многокомпонентной детали послойным способом с помощью 3D-принтера на основе экструзии включает предоставление цифровой модели

многокомпонентной детали, разделенной на слои, и определение количества материалов в каждом из слоев цифрового режима. Метод включает использование цифровой модели башни продувки, имеющей N подразделений, имеющих замкнутую геометрию, где N — это количество печатающих головок, необходимых для печати детали, которая больше или равна трем, каждое соседнее подразделение контактирует друг с другом вдоль интерфейса и назначает каждую печатающую головку одному подразделению и траекториям инструмента, формирующим одно подразделение в каждом слое. Метод включает переназначение назначенного подразделения в башне продувки неактивной печатающей головки в слое печатающей головке, которая активна в слое многокомпонентной детали.

US2024051229 (A1)

Настоящее изобретение относится к трехмерному устройству формирования (3D-принтеру), имеющему блок изображения печатающей головки несколькими пассивными микроразмерными соплами, пассивные микроразмерные сопла также интегрированы с материальными интерфейсами. Блок печатающей головки содержит механизм захвата сопла для захвата указанного пассивного микроразмерного сопла, механизм подачи нити или стержня для подачи материала и нагревательный механизм, предназначенный бесконтактного регулирования нагрева нижней части пассивного микроразмерного сопла. Также раскрыт способ печати трехмерного материалов с использованием инновационного нескольких ИЗ трехмерного устройства формирования изображения, имеющего печатающую с несколькими пассивными соплами. Трехмерное устройство формирования изображения способно обеспечивать различные материалов, а также различные цвета материалов для создания трехмерного объекта

US2024033821 (A1)

Настоящее изобретение относится к трехмерной печати с использованием металла(ов) и композитных металлических материалов. Описывается способ 3D-печати объекта с использованием композитных металлических материалов, который изготавливается с использованием по меньшей мере двух типов материалов, таких как металл и металлические сплавы. Распечатанный 3Dобъект подвергается термической обработке после печати для преобразования материалов композитных металлических металлов. сплавы композитные металлические материалы раскрываются И 3D-принтер с печатающей головкой для подачи композитных металлических материалов. Материал с низкой температурой плавления (LTM) и металлический порошок с высокой температурой плавления (НТМР) используются для приготовления композитных металлических материалов. Раскрывается также аддитивный

процесс, который может быть использован для изготовления трехмерных объектов.

Сценарий патентов на 3D-печать настолько сложен, насколько это можно себе представить. 3D-печать не только является самой горизонтальной технологией из существующих, с конкретными патентоспособными приложениями практически в каждом сегменте производства, но и охватывает несколько технологических областей, включая механику (аппаратное обеспечение), ИТ (программное обеспечение и автоматизация) и материаловедение. Кроме того, запатентовать можно не только технологии 3D-печати, но и все, что сделано с помощью 3D-принтера, но не было сделано ранее (и большинство вещей никогда ранее не делалось с помощью 3D-принтера). Наконец, 3D-печать можно использовать для легкого копирования запатентованных (и защищенных авторским правом) продуктов, что еще больше усложняет правовой ландшафт.

Отчет IPlytics рассматривает аддитивное производство и 3D-печать с точки зрения интеллектуальной собственности, снова демонстрируя, что патенты на технологии 3D-печати растут. Чтобы идентифицировать патенты, связанные с 3D-печатью, база данных платформы IPlytics провела обширный поиск ключевых слов по всем поданным во всем мире патентам в области технологий 3D-печати. Поиск был основан на содержании патента с использованием современных методов стемминга и семантического индексирования. В период с 2007 по 2019 год анализ выявил 95 302 патента и 43 718 патентных семейств (уникальных патентов в базе данных INPADOC), имеющих отношение к 3Dпечати. Затем в отчете определяются крупнейшие держатели патентов (спойлер: больше всего у GE, HP на втором месте) и страны, в которых было подано больше всего патентов (спойлер: на первом месте США). Анализ патентной активности компаний показывает, что General Electric подала больше всего патентов на 3D-печать в электроэнергетической отрасли во втором квартале 2024 года. Компания подала 8 патентов, связанных с 3D-печатью, за квартал по сравнению с 3 в предыдущем квартале. За ней следует GE Vernova с 5 патентными заявками на 3D-печать, RTX (5 заявок) и Eaton Corporation (4 заявки). Многие патенты принадлежат также китайским и японским компаниям.

Дата поступления: 29.08.2024

Дата публикации: 01.10.2024