Снижение влияния загрязнения частицами мелкодисперсной пыли $PM_{0,5}\text{-}PM_{10}$ при строительстве на здоровье рабочих

С.Е. Манжилевская, Л.К. Петренко, И.С. Кобелева

Донской государственный технический университет, Ростов-на-Дону

Аннотация: В статье представлен анализ воздействия частиц мелкодисперсной пыли, выделяемой при производстве строительных процессов, на здоровье строителей, и предложены мероприятия по его снижению. Серьезную угрозу для здоровья рабочих на строительной площадке и людей, проживающих по соседству с ней, представляют частицы мелкодисперсной пыли во взвешенном состоянии, как сами по себе, так и в общей концентрации вредного загрязнения атмосферного воздуха вблизи строительного производства. Анализ мониторинга концентрации взвешенных веществ показал, что соотношение между временем воздействия взвешенных частиц пыли в различных концентрациях прямо пропорционально влияет на здоровье людей. Загрязнение воздуха рабочей зоны отрицательно влияет на работоспособность, вызывает у рабочих заболевания, может стать причинами травматизма за счет ухудшения видимости. Организация условий, соответствующих охране труда и технике безопасности, здоровой экологической обстановки на строительной площадке обеспечит рост производительности труда до 12% и улучшит качество выполняемых процессов.

Ключевые слова: экологическая безопасность, экологический мониторинг, защита атмосферного воздуха, экология в строительстве, пылеподавление, оседание пыли, системы пылеулавливания, охрана труда в строительстве.

Серьезную угрозу для здоровья рабочих на строительной площадке и людей, проживающих по соседству с ней, представляют частицы мелкодисперсной пыли $PM_{0,5}$ - PM_{10} (particle matter) во взвешенном состоянии как сами по себе, так и в общей концентрации вредного загрязнения атмосферного воздуха вблизи строительного производства. Основной источник их попадания в организм — это дыхательная система, которая испытывает особо повышенный вред, так как около 50% частиц мелкой фракции размером 0,01-0,1мкм, попадая в легкие, оседают в них [1,2].

Частицы мелкодисперсной пыли $PM_{0,5}$ - PM_{10} могут навредить здоровью следующими способами:

1. Частицы сами по себе имеют токсический эффект или являются абсорбентом токсичного вещества;

2. Частицы при попадании в дыхательные пути механически затрудняет дыхательную деятельность.

Особое внимание необходимо уделять особо токсичным частицам вещества диоксида серы SO_2 , чья концентрация значительно повышается в процессе производства земляных работ, производстве бетона. В таблице 1 представлены существующие допустимые пределы концентрации частиц мелкодисперсной пыли для взаимодействия с окружающей средой и человеком [3].

Таблица 1 — Степени воздействия частиц мелкодисперсной пыли с веществом SO_2 на окружающую среду и здоровье людей

Концентрация	Условия и временные	Результаты воздействия на		
взвешенных частиц	интервалы воздействия	окружающую среду и организм		
$PM_{0,5}$ - PM_{10} , мкг/м ³	•	человека		
60-180	Среднегодовое с присутствием	Повышенная степень коррозии		
	влажности до 50%	металла		
80-100	Одновременное с присутствие	Влияет на повышение уровня		
	в составе SO_2 не менее 30 мг/см ²	смертности населения до 50%		
100-150	Среднегодовое с присутствием	Снижение солнечной радиации в		
	влажности до 70%	3 раза от обычных показателей		
150	Среднегодовое с присутствием	Снижение видимости за счет		
	влажности до 50%	присутствия частиц во		
		взвешенном состоянии в воздухе		
200	Одновременное максимально	Заболеваемость рабочих на		
	разовое за 24 часа	строительной площадке		
		увеличивается до 15%		
260	Среднесуточное с присутствием	Повышенные показатели		
	в составе SO_2 не менее	хронических заболеваемости		
	250мг/см ²	дыхательных путей у рабочих		
		строительного производства		
300	Одновременное максимально	Рабочие с хроническими		
	разовое за 24 часа с	заболеваниями дыхательных		
	присутствием в составе SO_2 не	путей испытывают обострение		
	менее 250мг/см ²	симптомов болезни		
750	Среднесуточное с присутствием	Значительное увеличение		
	в составе SO ₂ не менее	заболеваемости и смертельных		
	715мкг/см ²	случаев на стройплощадки		
		рабочих и проживающего		
		поблизости населения		

Анализ мониторинга концентрации взвешенных веществ показал, что соотношение между временем воздействия взвешенных частиц пыли в различных концентрациях прямо пропорционально влияет на здоровье людей. В данном исследовании важен фактор времени в ожидании последствий. В процессе мониторинга можно наблюдать ситуации, где воздействие взвешенных веществ мелкодисперсной пыли в сочетании, например, с диоксидом серы, приведет к более серьезным последствиям для здоровья, чем воздействие каждого компонента в отдельности [4,5]. Исследования в лабораторных условиях тоже не дадут качественные результаты из-за сложности воспроизведения точных условий, как в окружающей среде.

В таких условиях необходимо полагаться на статистические данные, такие, как увеличение госпитализации людей, посещения поликлиниках, уменьшение выходов рабочего персонала на работу и анализ смертности от заболеваний, обостряющихся за счет воздействия частиц мелкодисперсной пыли в сопоставлении с показателями мониторинга концентрации загрязнителей в атмосферном воздухе в рассматриваемый период времени. Особое внимание необходимо уделять взаимосвязи изменения концентрации взвешенных веществ и числа пациентов с такими заболеваниями, как инфекции верхних дыхательных путей, сердечная недостаточность, бронхиты, астма, пневмония и т.д. Важны также показатели увеличения смертности пожилых людей от респираторных и сердечных заболеваний, живущих рядом со строительными площадками, концентрация взвешенных частиц значительно выше средних значений за продолжительный период.

Растет объем данных, указывающих на то, что большая часть частиц в атмосфере по своей природе канцерогенна, особенно это важно для курящих людей. В таблице 2 представлены данные по оценке выбросов загрязняющих

веществ в 2019 г по разным видам отраслям хозяйственной деятельности, в т.ч. и в строительной отрасли [6].

Таблица 2 — Оценка годового выброса загрязнителей в 2019 г., тыс. тонн.

Источники	Взвешенные	SO_2	CO	HC	NO ₂	%
	частицы					
Все подвижные источники	900	1150	159300	27850	16250	57,3
Энергетические паровые	4083	28150			16053	13,5
котлы						
Топливная промышленность	296	4943	10490	2228		5,0
Промышленные котлы	6867	7774			2069	4,7
Утилизация отходов	2993		5320	7283		4,3
Металлургическая	1118	5021	4678			3,0
промышленность						
Строительство	3323					0,9
Сельское и лестное хозяйство	2583		275	23	2	0,8
Химическая промышленность	1035	830			115	0,6
Неконтролируемые	8592	631		3623	1593	9,9
источники						
Всего	31790	48499	201268	41007	36082	100

Необходимо осуществлять контроль над выбросами пыли в окружающую среду. Выбор точек постоянного контроля производится работниками специальных лабораторий совместно с представителями строительной компании, и согласуется с местной санэпидстанцией (СЭС).

Валовое количество вредных веществ (пыли, газов), поступающих в атмосферу определяют по формуле:

$$G = \frac{QCcp}{10^3},\tag{1}$$

где Q — количество воздуха, удаляемого от источника загрязнения вентиляционным или технологическим выбросом, ${\rm M}^3/{\rm c}$; ${\it Ccp}$ — средняя концентрация вредных веществ (пыли, газов и т.д.) в отходящем пылевоздушном потоке, мг/ ${\rm M}^3$ [7].

Усредненный уровень концентрации взвешенных веществ определяется по скорости потока воздуха всех проведенных замеров:

$$Ccp = \frac{C1V1 + C2V2 + \dots + CnVn}{V1 + V2 + \dots + Vn} , \qquad (2)$$

где C1, C2, ..., Cn — концентрации вредных веществ в точках отбора проб, мг/ м³; V1, V2, ..., Vn — скорости воздуха в тех же точках, м/с.

Количество воздуха, выбрасываемого источниками, определяется по средней скорости потока и площади сечения:

$$Q = VcpS, (3)$$

где, V_{cp} – средняя скорость воздушного потока, $Vcp = \frac{\sum_{i=1}^{n} Vi}{n}$.

Годовой валовый выброс вредных веществ получается умножением величины G на фактическое время производства пылящих процессов в течение года. Такие данные фиксируют путем проведения хронометражных замеров работы оборудования. Скорость воздушной смеси на выбросах измеряют анемометром или трубкой Пито в комбинации с микроманометрами [8].

Концентрацию пыли в выбросе рассчитывают по формуле:

$$C = \frac{m}{ot},\tag{4}$$

где m — масса пробы пыли, мг; Q — объемный расход воздуха через пробоотборник, m^3/c ; t — время отбора пробы, c.

Для отбора проб на запыленность в воздухе рабочей зоны строителей применяют фильтры типа АФА, изготавливаемые из негигроскопичной ткани ФПП [9].

Для постоянного контроля над состоянием воздушной среды используется модернизированная лаборатория ПОСТ-2 [10]

Загрязнение воздуха рабочей зоны отрицательно влияет на работоспособность, вызывает у рабочих заболевания, может стать причинами травматизма за счет ухудшения видимости. Организация условий, здоровой соответствующих технике безопасности, охране труда И экологической обстановки на строительной площадке обеспечит рост

производительности труда до 12% и улучшит качество выполняемых процессов.

Содержание взвешенных частиц в атмосфере снижает видимость, ведет к росту респираторных заболеваний населения, образованию смогов.

Особо опасными для здоровья человека являются частицы мелкодисперсной пыли менее 5мкм — $PM_{0,5}$ — PM_5 . Они могут проникать в легкие, осесть в них и вызвать заболевания, такие, как бронхит, астма.

Существует также частицы, которые практически не оседают и находятся в постоянном движении в воздухе. Это частицы диаметрами 10мкм (PM_{10}) и 2,5мкм ($PM_{2,5}$). В настоящее время мониторинг содержания данных частиц на строительной площадке не осуществляется и ранее не проводился.

В предупреждении таких заболеваний важное значение имеют меры законодательного характера, мероприятия по борьбе с образованием и распространением пыли, меры индивидуальной защиты, биологические методы профилактики. Необходимо при выходе на смену работников, выполняющих строительные процессы, с выделением производственной пыли, обязать проходить медосмотр и организовывать рабочее место строителя средствами и оборудованием по пылеулавливанию, что не позволит превысить предельно допустимые концентрации (ПДК) пыли в рабочей зоне.

Можно сделать вывод, что рациональная борьба с загрязнением атмосферы базируется на двух основных положениях:

1. Воздух является общественным достоянием. Такое положение необходимо, если загрязнение атмосферы рассматривать, как общественную проблему, имеющую отношение не только к тем, кто ответственен за загрязнение, но также и к тем, кто может пострадать от него.

- 2. Загрязнение атмосферы неизбежно сопутствует современной жизни. В настоящее время определился конфликт между экономической деятельностью человека и его биологическими заботами. В прошлом этот конфликт был осознан только после бедствий, причиной которых явилось атмосферы. Сейчас нуждаемся МЫ систематическом совершенствовании политики и развития программ, направленных на сохранение ее наиболее важной биологической функции.
- 3. На строительных площадках для снижения вредного воздействия пылевого загрязнения на здоровье рабочих работодателю необходимо организовывать рабочее место строителей системами пылеулавливания и защиты от пылевого загрязнения, проводить медицинские осмотры работников, определять на конкретных работах ограничения по времени нахождения рядом с источником выделения пыли.

Правильно организованная работа по борьбе с пылью значительно увеличивает процент снижения заболеваемости.

В городах на промышленных предприятиях и стройках должен осуществляться постоянный контроль за состоянием атмосферного воздуха.

Литература

- 1. Беспалов В.И., Котлярова Е.В., Бондаренко А.С. Научно методические основы обеспечения экологической безопасности территорий в условиях урбанизации // Инженерный вестник Дона, 2019. № 1. URL: ivdon.ru/ru/magazine/archive/n1y2019/5553
- 2. Ганичева Л.З. Анализ состояния атмосферного воздуха в промышленных городах Ростовской области// Инженерный вестник Дона, 2013. № 2. URL: ivdon.ru/ru/magazine/archive/n2y2013/1701
- 3. Чебанова С.А., Азаров В.Н., Азаров А.В., Поляков В.Г. Влияние организационно-технологических решений строительства в стесненных

условиях на окружающую среду// Инженерный вестник Дона, 2018. № 1. - URL: ivdon.ru/ru/magazine/archive/n1y2018/4790

- 4. Калюжина Е.А., Несветаев Г.В., Азаров В.Н. Исследования значений РМ[10] и РМ [2,5] в выбросах в атмосферу и рабочую зону при ремонтностроительных работах // Интернет-вестник ВолгГАСУ. Сер. Политематическая, 2012. №1 (20). URL: vestnik.vgasu.ru/?source=4&articleno=785
- 5. Глинянова И.Ю. Оценка загрязнения окружающей среды примесями кислых или щелочных веществ с одновременной оценкой их удельной электрической проводимости // Инженерный вестник Дона, 2019. № 6. URL: ivdon.ru/ru/magazine/archive/N6y2019/6066
- 6. Hritonenko N. Mathematical Modeling in Economics, Ecology and the Environment. Springer Science & Business Media, 2014. 296 p.
- 7. Gillman M. An Introduction to Mathematical Models in Ecology and Evolution: Time and Space. John Wiley & Sons, 2009. 158 p.
- 8. Versini P.-A., Gires A., Tchiguirinskaia I., Schertzer D. Fractal analysis of green roof spatial implementation in European cities. Urban Forestry & Urban Greening, volume 49, 2020. Pp.114-122.
- 9. Shafique Muhammad, Luo Xiaowei, Zuo Jian. Photovoltaic-green roofs: A review of benefits, limitations, and trends. Solar Energy, volume 202, 2020. Pp. 485-497.
- 10. Bevilacqua Piero, Bruno Roberto, Arcuri Natale. Green roofs in a Mediterranean climate: energy performances based on in-situ experimental data. Renewable Energy, volume 152, 2020. Pp. 1414-1430.

References

1. Bespalov V.I., Kotlyarova E.V., Bondarenko A.S. Inzhenernyj vestnik Dona, 2019. № 1. URL: ivdon.ru/ru/magazine/archive/n1y2019/5553

- 2. Ganicheva L.Z. Inzhenernyj vestnik Dona, 2013, № 2. URL: ivdon.ru/ru/magazine/archive/n2y2013/1701
- 3. Chebanova S.A., Azarov V.N., Azarov A.V., Polyakov V.G. Inzhenernyj vestnik Dona, 2018, № 1. URL: ivdon.ru/ru/magazine/archive/n1y2018/4790
- 4. Kaluzhina E.A., Nesvetaev G.V., Azarov V.N. Internet-vestnik VolgGASU, 2012. № 1. URL: vestnik.vgasu.ru/?source=4&articleno=785
- 5. Glinyanova I.U. Inzhenernyj vestnik Dona, 2019, № 6. URL: ivdon.ru/ru/magazine/archive/N6y2019/6066
- 6. Hritonenko N. Mathematical Modeling in Economics, Ecology and the Environment. Springer Science & Business Media, 2014. 296 p.
- 7. Gillman M. An Introduction to Mathematical Models in Ecology and Evolution: Time and Space. John Wiley & Sons, 2009. 158 p.
- 8. Versini P.-A., Gires A., Tchiguirinskaia I., Schertzer D. Fractal analysis of green roof spatial implementation in European cities. Urban Forestry & Urban Greening, volume 49, 2020. Pp.114-122.
- 9. Shafique Muhammad, Luo Xiaowei, Zuo Jian. Solar Energy, volume 202, 2020. Pp 485-497.
- 10. Bevilacqua Piero, Bruno Roberto, Arcuri Natale. Renewable Energy, volume 152, 2020. Pp. 1414-1430.