Коррозионная стойкость оксидных щелочных бронз вольфрама, молибдена в растворах сильных электролитов

T.И. Дробашева 1 , С.Б. Расторопов 2

¹Ростовский государственный строительный университет, Ростов-на-Дону ²Южный федеральный университет, Ростов-на-Дону

Аннотация. Исследована коррозионная стойкость 25-ти составов образцов одно- и двущелочных бронз вольфрама, молибдена в растворах HCl (25-26%), H_2SO_4 (21-60%), HNO_3 (60%) кислот и щелочей NaOH (20%), KOH (50%) при 293-358К в течение 1-15 месяцев. Образцы поликристаллов бронз получены электролизом расплавов поливольфраматов и - молибдатов элементов от лития до цезия. Общая формула состава бронз $-M_x'M_y'' \ni O_3$, где M' и M'' - щелочные металлы, $\ni W$, Mo.

Установлена высокая степень коррозионной стойкости исследованных составов бронз вольфрама в растворах трех минеральных кислот и едкого натра. Для бронз молибдена лучшие результаты получены в растворах серной кислоты. Эти различия связаны с особенностями кристаллохимии и нестехиометрии сложных тройных оксидов бронз вольфрама, молибдена.

Ключевые слова: оксидная щелочная бронза W, Mo, коррозионная стойкость, сильный электролит, кислота, щелочь.

Впервые оксидные бронзы были получены Ф. Велером в 1823 г. расплавов поливольфраматов восстановлением водородом натрия. было Впоследствии ЭТО название дано другим близким ним неорганическим нестехиометрическим соединениям переходных металлов четвертой – шестой групп периодической системы Д.И. Менделеева. В данной работе исследована химическая стойкость в растворах сильных электролитов одно - и двущелочных оксидных бронз вольфрама, молибдена $M_x \ni O_3, M_x' M_y'' \ni O_3$ (*M* – щелочной элемент, $\ni W$, *Mo*). Интерес к ним значительно возрос в последнее время в связи с особыми химическими, физическими свойствами перспективой применения виде электропроводящих покрытий, сенсоров, электрохромных материалов, катализаторов, в других областях современной техники [1-8].

Образцы кристаллов бронз выращены нами электролитическим осаждением на платиновом катоде в ионных расплавах щелочных

поливольфраматов, - молибдатов лития — цезия [1, 2]. Важной особенностью состава и строения оксидных бронз является их нестехиометрия, обусловленная переменной зарядовой плотностью ионов переходного металла.

Физические свойства оксидных бронз определяются электронной структурой и гибридизацией химической связи ионно-ковалентного типа $sp^{3}d^{2}$ вольфрама (молибдена) и кислорода, при этом заполнение d-орбитали соединений, ТИП проводимости TO есть металлическая, полупроводниковая сверхпроводимость при низких температурах. Установлено влияние нестехиометрии на химический состав, структуру, [9], электрофизические каталитические свойства кислородных многощелочных бронз вольфрама, молибдена.

Цель исследования — определение весовым методом химической коррозионной стойкости одно - и двущелочных оксидных бронз в растворах минеральных кислот: соляной (20-26%), серной (21-60%), азотной (60%), и щелочей: гидроксида натрия (20%) и калия (50%) при комнатной температуре и нагреве (358К). Масса образцов бронз составляла $\sim 0,5$ г, объем растворов — 20-50 мл. Для опытов взяты чистые, однородные по виду кусочки, иглы и пластинки бронз. С условием приближенности значений pH концентрированных растворов использованных электролитов интервал pH составлял 1-4,5 (кислоты) и около 14 (щелочи). Выбраны очень агрессивные среды с участием кислот-окислителей. Данные испытаний представлены в табл.1.

В табл. 1 включены опытные результаты изменения масс образцов оксидных одно - и двущелочных бронз под действием концентрированных соляной, серной, азотной кислот и двух видов щелочей — натрия, калия. Время выдержки составляло 1-15 месяцев. Апробированы 19 составов вольфрамовых и 6 составов молибденовых оксобронз, в том числе 8

многощелочных, четырех типов кристаллической структуры. Способ получения и определение химического состава образцов приведены в [1]. Бронзы Rb и Cs изучены впервые. Наибольшее количество двущелочных бронз представлено для калия и натрия. Важно отметить, что интервал электронных плотностей зарядов W^{n+} составляет у $M_x'M_y''WO_3$ 5.01-5.75, Mo^{n+} у $M_x'M_y''MoO_3$ 5.51-5.71, так как зона нестехиометрии первых значительно шире. Учтено влияние концентрации, температуры, времени выдержки, коэффициента активности электролита.

Наибольшая стойкость в кислых растворах наблюдается у натриевой и натрий-калиевых вольфрамовых бронз кубической структуры (HCl, H_2SO_4) и пяти видов моно - и двущелочных бронз вольфрама с натрием, литием, калием кубической и тетрагональной структуры, калий-рубидиевых бронз гексагональной структуры (HNO_3) в широком интервале n+=5.08 - 5.60 при 293 и 358К в течение 1-15 месяцев (табл. 1). Менее стойки вольфрамовые бронзы цезия и его двойных производных гексагонального типа. Коэффициенты активности HCl и H_2SO_4 даны в табл. 2, для H_2SO_4 они ниже, чем у HCl при сходных m, что проявилось в поведении цезиевых бронз.

Таблица 1 Коррозионная стойкость щелочных оксидных бронз вольфрама, молибдена в растворах кислот и щелочей

Бронзы вольфрама	Сингония	Заряд	Дефицит массы через		
		VV	W 30 cyr. Bec. %, 295K		
		n+	HCl	H_2SO_4	NaOH
			(20%)	(50%)	(20%)
$Na_{0.57}Li_{0.03}WO_3$	Кубическая	5.40	0.0	5.1	16.9
$K_{0.41}Li_{0.05}WO_3$	Тетрагональная	5.54	1.8	0.0	1.2
$K_{0.20}Rb_{0.15}WO_3$	Гексагональная	5.65	1.0	0.5	3.5
$Na_{0.35}K_{0.30}WO_3$	Тетрагональная	5.35	0.0	0.3	3.7
$Na_{0.65}K_{0.10}WO_3$	О ₃ Кубическая		0.0	0.7	1.3

		Заряд	Дефицит массы через		
Бронзы молибдена	C	Мо	30 сут. Вес. %, 295К		
	Сингония	1	HCl	H_2SO_4	NaOH
		n+	(20%)	(50%)	(20%)
$Na_{0.72}Li_{0.18}Mo_6O_{17}$	Моноклинная	5.52	10.2	3.4	63.6
$K_{0.26}Li_{0.03}MoO_3$	Моноклинная	5.71	55.4	12.3	90.0
$K_{0.30}MoO_3$	Моноклинная	5.70	100.0	10.4	89.2
$Na_{0.9}Mo_6O_{17}$	Моноклинная	5.52	9.8	8.0	67.9
$Li_{0.72}Na_{0.24}Mo_6O_{17}$	Моноклинная	5.51	13.7	3.6	40.4
$Li_{0.9}Mo_6O_{17}$	Моноклинная	5.52	25.4	9.0	86.2
		Заряд	Дефицит массы через		
Епоноги поли фиомо	Сингония	W	30 сут. Вес. %, 358К		
Бронзы вольфрама	Сингония	10±	HCl	H_2SO_4	HNO_3
		n+	(26%)	(21%)	(60%)
$Na_{0.92}WO_3$	Кубическая	5.08	0.0	0.8	
$Na_{0.68}K_{0.10}WO_3$	Кубическая	5.22	0.0	6.1	
$Na_{0.65}K_{0.06}WO_3$	Кубическая	5.29	0.0	0.0	
$Na_{0.70}WO_3$	Кубическая	5.30			0.0
$Na_{0.40}WO_3$	Тетрагональная	5.60			0.0
$Na_{0.32}K_{0.30}WO_3$	Тетрагональная	5.38			0.0
$Na_{0.06}Li_{0.05}WO_3$	Кубическая	5.35			0.0
$K_{0.20}Rb_{0.15}WO_3$	Гексагональная	5.50			0.0
		Заряд <i>W</i>	Дефицит массы через		
	Сингония		15 месяцев. Вес. %,		
Бронзы вольфрама			295К		
		n+	HCl	H_2SO_4	КОН
			(30%)	(60%)	(50%)
$Na_{0.99}WO_3$	Кубическая	5.01	0.0	0.0	2.4
$Na_{0.92}Rb_{0.02}WO_3$	Кубическая	5.06	0.4	0.6	4.0
$K_{0.47}WO_3$	Тетрагональная	5.53	0.2	0.1	2.8
$K_{0.20}Cs_{0.10}WO_3$	Тетрагональная	5.70	6.9	9.0	18.0
$Na_{0.01}Rb_{0.32}WO_3$	Гексагональная	5.67	4.7	4.6	13.6
$Cs_{0.25}WO_3$	Гексагональная	5.75	0.8	10.0	19.3

В общем, стойкость молибденовых бронз *Li*, *Na*, *K* существенно уступает бронзам вольфрама этих щелочных элементов, причем наилучшие данные получены для натриевых и натрий- литиевых образцов в растворе серной кислоты 5.1 моляльной концентрации. В щелочных растворах натрия, калия более стойкими являются вольфрамовые бронзы натрия, калия,

рубидия кубической, тетрагональной структуры и калий-рубидиевые бронзы гексагональной структуры. Молибденовые бронзы Li, Na, K в концентрированных растворах натриевой и калиевой щелочи неустойчивы.

Таблица 2 Характеристика использованных электролитов (298K) [10]

Электролит	C (%)	Моляльная концентрация, <i>т</i>	Плотность, <i>р</i> (288К), г/см ³	Коэффициент активности электролита $(\gamma \pm)$
HCl	20	5.6	1.025	2.86
H_2SO_4	21	2.1	1.150	0.129
H_2SO_4	50	5.1	1.40	0.211
H_2SO_4	60	6.1	1.503	0.261
HNO_3	60	9.5	1.372	
NaOH	20	5.0	1.228	1.077
KOH	50	8.9	1.540	3.766

Различие в коррозионной стойкости испытанных видов одно- и двущелочных бронз вольфрама, молибдена, видимо, можно объяснить большой шириной зоны нестехиометрии оксидных бронз вольфрама, что способствует формированию у них нестехиометрического полимерного вольфрам-кислородного каркаса кристаллических структур и многих физико-химических свойств.

На основе проведенного исследования многощелочные оксидные бронзы вольфрама можно рекомендовать для применения в технике в качестве антикоррозионных неорганических материалов, стойких в агрессивных средах сильных кислот и оснований при 293-358К.

Литература

- 1. Оксидные бронзы. М.: Наука, 1982. С.40-75.
- 2. Третьяков Ю.Д., Путляев В.И. Введение в химию твердофазных материалов. Москва: Изд. МГУ, Наука, 2006. 400 с.
- 3. Lee S.-M., Saji V.S., Lee C.W. Electrochemical multi-coloration of molybdenum oxide bronzes //Bull. Korean Chem. Soc. 2013. V.34. N8. pp. 2348-2352.
- 4. Green M., Smith W.C. Weiner J.A. Thin-film electrochromic display based on tungsten bronzes //Thin Solid Films. 1976. V.38. N1. pp.89-100.
- 5. Sepa D.B., Vojnovic M.V., Ovcin D.S., Pavlovic N.D. Behavior of sodium tungsten bronze electrode in alkaline solutions //Electroanalitical Chem. and Interfacial Electrochem. 1974. V.51. pp.99-106.
- 6. Sepa D.B., Ovcin D.S., Vojnovic M.N. Hydrogen evolution reaction of sodium tungsten bronzes in acid solutions // J. Electrochem. Soc.: Electrochem. sci. and technology, 1972. V.119. N10. pp.1285-1288.
- 7. Дробашева Т.И., Расторопов С.Б. Термостойкость кислородных щелочных вольфрамовых и молибденовых бронз. Инженерный вестник Дона, 2013, №1 URL: ivdon.ru/magazine/archive/n1y2013/1488.
- 8. Randin J.P., Vijh A.K., Chughtai A.B. Electrochemical behavior of sodium tungsten bronze electrodes in acidic media // J. Electrochem. Soc.: Electrochem. sci. and technology. 1973. V.120. N9. pp.1174-1184.
- 9. Дробашева Т.И., Расторопов С.Б. Нестехиометрия и электрохромизм оксидов и многощелочных бронз вольфрама //Инженерный вестник Дона. 2014, N1 URL: ivdon.ru/magazine/archive/n1y2014/2274.
 - 10. Справочник химика. М.-Л.: Химия, 1968. Т.3. С.580-594.

References

- 1. Oksidnye bronzy [Oxide bronzes]. Moscow: Nauka, 1982. pp. 40-75.
- 2. Tretyakov Yu. D., Putlyaev V.I. Vvedenie v khimiyu tverdofaznykh materialov [Introduction to the chemistry of solid phase materials]. Moscow: MGU Publ., Nauka, 2006. 400 p.
- 3. Lee S.-M., Saji V.S., Lee C.W. Bull. Korean Chem. Soc. 2013. V.34. N8. pp.2348-2352.
- 4. Green M., Smith W.C., Weiner J.A. Thin Solid Films. 1976. V.38. N1. pp.89-100.
- 5. Sepa D.V., Vojnovich M.V., Ovcin D.S., Pavlovic N.D. Electroanalitical Chem. and Interfacial Electrochem. 1974. V.51. pp.99-106.
- 6. Sepa D.V., Ovcin D.S., Vojnovich M.V. J. Electrochem. Soc.: Electrochem. sci. and technology. 1972. V. 119. N10. pp.1285-1288.
- 7. Drobasheva T.I., Rastoropov S.B. Inzhenernyj vestnik Dona (Rus), 2013, N1 URL: ivdon.ru/magazine/archive/n1y2013/1488.
- 8. Randin J.P., Vijh A.K., Chughtai A.B. J. Electrochem. Soc.: Electrochem. sci. and technology. 1973. V.120. N9. pp.1174-1184.
- 9. Drobasheva T.I., Rastoropov S.B. Inzhenernyj vestnik Dona (Rus), 2014, N1 URL: ivdon.ru/magazine/archive/n1y2014/2274.
- 10. Spravochnik khimika [Chemist's reference book]. Moscow-Leningrad: Khimiya, 1968. T.3. pp.580-594.