Разработка системы управления и передачи информации с использованием беспилотных ретрансляторов

И.Г. Анцев

АО «Научно-производственное предприятие «Радар ммс»

Аннотация: В статье исследованы варианты конфигурации бортовой аппаратуры связи. Проведены моделирование и оценка вариантов размещения антенн на борту беспилотного летательного аппарата вертолетного типа (БЛА ВТ) с учетом влияния элементов конструкции и полезной нагрузки на диаграмму направленности антенн, приведены сводные результаты моделирования диаграмм направленности и анализа потерь, обусловленных влиянием элементов конструкции БЛА ВТ при различном размещении антенн. Проведен расчет бюджета потерь для разных сочетаний наземной и бортовой аппаратуры с учетом различных дальностей при максимальном перепаде высот. Предложены варианты реализации ретранслятора на базе БЛА-ВТ.

Ключевые слова: система управления, беспилотный ретранслятор, бортовая аппаратура связи, канал управления, приемо-передающий тракт, радиоканал, ретранслятор, диаграииа направленности.

Введение

Организация системы управления и передачи информации (СУПИ) в зависимости от назначения и типов выполняемых задач может иметь различные виды конфигурации. Одним из вариантов является включение в структуру СУПИ ретрансляторов на борту беспилотных летательных аппаратов вертолетного типа (БЛА ВТ) [1].

Предлагаемая система обеспечивает:

- возможность организации нескольких направлений связи между наземным пунктом управления (НПУ) и беспилотными летательными аппаратами вертолетного типа (БЛА ВТ) при их произвольном расположении в секторе 360° вокруг НПУ;
- возможность организации на борту БЛА ВТ ретрансляции между двумя направлениями связи при произвольном расположении корреспондентов (НПУ и БЛА ВТ, либо двух БЛА ВТ) в секторе 360° вокруг БЛА ВТ Ретранслятора;

- возможность организации линии связи из трех интервалов при двух ретрансляциях на БЛА ВТ;
- скорость передачи не менее 7 Мбит/с по каналу данных (КД) полезной нагрузки (ПН) от оконечного БЛА ВТ в сторону НПУ с ретрансляцией данных на промежуточных БЛА ВТ;
- скорость обмена не менее 64 кбит/с по каналу управления (КУ) для каждого из трех БЛА ВТ;
- дальность связи в условиях прямой радиовидимости не менее 25 км как между НПУ и БЛА ВТ, так и при ретрансляции между БЛА ВТ.

Варианты организации связи бортовой аппаратуры с наземным пунктом управления

Исходя из тактики применения СУПИ предложено семь сценариев организации связи (рис. 1), при которых бортовая аппаратура связи обеспечивает устойчивый канал передачи информации с наземным пунктом управления (НПУ). Синие стрелки соответствуют направлениям передачи канала управления БЛА ВТ и целевой нагрузкой, а красные -данным целевой нагрузки.

В сценариях применения 2, 3, 5, 6 данные целевой нагрузки идут либо с одного, либо с другого БЛА ВТ.

Требование обеспечения секторе 360° предполагает связи в использование дипольных антенн круговой направленности, которые имеют типовой Ky~2 дБи. Габариты применяемого БЛА BTдопускают использование малогабаритных антенн размером не более 200...250 мм. Исходя из того, что ниже ~650 МГц неприемлемо растут габариты антенны, а выше ~2350 МГц из-за роста потерь распространения требуется применять направленные антенны, полоса рабочих частот выбрана в пределах от 650 до 2350 МГц.

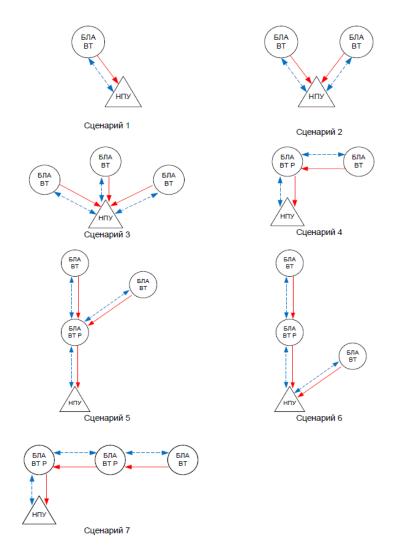


Рис. 1. – Сценарии организации связи СУПИ

При временном разделении приема/передачи (временной дуплекс) скорость передачи 7 Мбит/с по каналу данных обеспечена при минимальной ширине полосы сигнала ~11 МГц и модуляции QPSK, при этом, в случае использования помехоустойчивого кодирования LDPC5G чувствительность приемника составляет –86 дБ.

Для выбора полосы рабочих частот проведена оценка энергетических характеристик радиоканала на дальности 25 км с учетом следующих реализуемых характеристик: чувствительности приемника, мощности передатчика и Кус антенн [2].

По результатам оценки энергетических характеристик радиоканала установлено, что наиболее пригодным для работы является участок диапазона частот 650 -750 МГц, в котором обеспечивается наилучшая энергетика для всех вариантов исполнения приемопередающего тракта. При этом следует отметить, что одноканальный тракт может обеспечить требуемую энергетику радиоканала на высотах не более 200 м над уровнем моря.

Выбор варианта конфигурации

С учетом вариантов исполнения приемопередающего тракта и количества антенн исследованы следующие варианты конфигурации бортовой аппаратуры связи:

- одноканальный приемопередатчик с одиночной антенной;
- двухканальный приемопередатчик с двумя антеннами,
 собранными в согласованную решетку (линия с шагом между центрами
 антенн ~140 мм), и использованием технологии цифровой активной
 фазированной антенной решетки (ЦАФАР) [3,4];
- двухканальный приемопередатчик с двумя независимыми (разнесенными) антеннами с использованием технологии сдвоенного приема и пространственного разнесения.

Для выбора наилучшего варианта конфигурации бортовой аппаратуры связи при его использовании в качестве оконечного оборудования и в качестве ретранслятора проведено моделирование и оценка вариантов размещения антенн на борту БЛА ВТ с учетом влияния элементов конструкции и полезной нагрузки на диаграмму направленности антенн [5]. Сводные результаты моделирования диаграмм направленности и анализа потерь, обусловленных влиянием элементов конструкции БЛА ВТ при различном размещении антенн, представлены в табл. 1.

Таблица № 1 Потери, обусловленные влиянием элементов конструкции БЛА ВТ при различном размещении антенн

Мат-л	Вариант	Вариант размещения антенн		
шасси	тракта	№ Вид размещения		дБ
			Носок лыжи шасси	8
ГИК	1x		Под хвостовой балкой	8
Металл, углепластик			Слева или справа по борту в габарите	7
епл			Слева или справа по борту с выносом от	6
угл			Над винтом	2,5
л, у			Конформно вокруг стойки шасси	6
гал	2хПР		Слева и справа по борту в габарите шасси	4
Me	2/1111		Слева и справа по борту с выносом от	2
	2хЦАФАР		Под хвостовой балкой	6
			По центру на лыже шасси	2,6
			По центру на лыже шасси с подъемом на	8
	1x		По центру на лыже шасси с подъемом на 250 мм и выносом от шасси на 200 мм	4
			На уровне задних стоек шасси с выносом от борта на 200 мм	4
			По диагонали на стойках шасси с наклоном	6
1K			Конформно по диагонали на стойках шасси	6,5
СТЕ			По центрам на лыжах шасси	2
ПЛа			По центрам лыж шасси с подъемом на 250	3
Стеклопластик	2хПР		По центрам лыж шасси с подъемом на 250	1
CT			На уровне задних стоек шасси с выносом	1
			По диагонали на стойках шасси с наклоном	1
			Конформно по диагонали на стойках шасси	
	2хЦАФАР	Под корпусом по центру шасси		
	2хПР	Разнесенные антенны (2х ПР) - п диагонали на стойках шасси с наклоном		1,7
	2хЦАФАР		Антенная решетка (2х ЦАФАР) - по центру под корпусом	3,5

Определение допустимых углов наклона радиотрассы

Для определения допустимых углов наклона радиотрассы при организации связи проведен анализ диаграмм направленности и проведен расчет бюджета потерь для разных сочетаний наземной и бортовой аппаратуры с учетом различных дальностей при максимальном перепаде высот (табл. 2–5).

Таблица № 2 Бюджет потерь на линии «БЛА ВТ Р – НПУ» с учетом дальности и наклона трассы при перепаде высот $\Delta h = 500$ м

Гор.	Наклон	Запас	Потери ДН	Потери ДН	Рез. запас
лапьность		уровня	7хЦАФАР	2хЦАФАР	уровня
<i>d</i> , км	трассы α,°	сигнала A ,	ΔL α $_7$ хЦ, дБ	ΔL а $_2$ хЦ, дБ	сигнала $A_{L\alpha}$,
25	1,15	13,1	0	1	12,1
20	1,44	15	0	1	14
15	1,9	17,5	0,1	1,1	16,3
10	2,9	21	0,2	1,2	19,6
5	5,7	27	0,5	1,5	25
2	14	35	1	3	31
1	26,5	41	2	0	41
0,5	45	44	5	6	33
0,285	60	45,5	9	12	24,5

Таблица № 3 Бюджет потерь на линии «БЛА ВТ ЦПН – НПУ» с учетом дальности и наклона трассы при перепаде высот $\Delta h = 500$ м

Гор.	Цомпон	Запас уровня	Потери ДН	Потери ДН	Рез. запас
дальность	Наклон	сигнала A , дБ	7хЦАФАР	2хПР	уровня
d, km	трассы α,°		ΔL а $_7$ хЦ, дБ	ΔL а $_2$ хЦ, дБ	сигнала $A_{L\alpha}$,
1	2	3	4	5	6
25	1,15	10,6	0	1	9,6
20	1,44	12,5	0	1	11,5
15	1,9	15	0,1	0,7	14,2
10	2,9	18,5	0,2	0,3	18
5	5,7	24,5	0,5	0	24

1	2	3	4	5	6
2	14	32,5	1	0	31,5
1	26,5	38,5	2	2	34,5
0,5	45	41,5	5	6	30,5
0,285	60	43	9	10	24

Таблица № 4 Бюджет потерь на линии «БЛА ВТ ЦПН – БЛА ВТ Р» с учетом дальности и наклона трассы при перепаде высот $\Delta h = 500$ м

Гор.	Наклон	Запас уровня	Потери ДН	Потери ДН	Рез. запас
дальность	трассы	сигнала А, дБ	2хПР	2хЦАФАР	уровня
d, KM	$\alpha,^{\circ}$		ΔL а $_7$ хЦ, дБ	ΔL а ₂ хЦ, дБ	сигнала A_{Llpha} , дБ
25	1,15	3,6	1	1	1,6
20	1,44	5,5	1,3	1	2,2
15	1,9	8	1,5	1,1	5,5
10	2,9	11,5	1,7	1,2	8,6
5	5,7	17,5	2	1,5	14
2	14	25,5	5	3	17,5
1	26,5	31,5	7	0	24,5
0,5	45	34,5	8	6	20,5
0,285	60	36	12	12	12

Таблица № 5 Бюджет потерь на линии «БЛА ВТ Р – БЛА ВТ Р» с учетом дальности и наклона трассы при перепаде высот $\Delta h = 500$ м

Гор. дальность d , км	Наклон трассы α, °	Запас уровня сигнала A , д $\overline{\mathbf{b}}$	Потери ДН 2хЦАФАР Δ <i>L</i> α ₇ хЦ, дБ	Потери ДН 2хЦАФАР Δ <i>L</i> α ₂ хЦ, дБ	Рез. запас уровня сигнала $A_{L\alpha}$, дБ
1	2	3	4	5	6
25	1,15	8,6	1	1	6,6
20	1,44	10,5	1,3	1	7,9
15	1,9	13	1,5	1,1	10,4

1	2	3	4	5	6
10	2,9	16,5	1,7	1,2	13,6
5	5,7	22,5	2	1,5	19
2	14	30,5	6,5	3	21
1	26,5	36,5	7,5	3	26
0,5	45	39,5	9	6,5	24
0,285	60	41	22	12	8

Анализ бюджетов потерь с учетом наклона радиотрассы показывает, что для всех сочетаний корреспондирующих объектов («БЛА BT -PTP -НПУ», «БЛА ВТ-ЦПН - НПУ», «БЛА ВТ-ЦПН - БЛА ВТ-РТР», «БЛА ВТ-РТР - БЛА ВТ-РТР») при заданном максимальном перепаде высот обеспечивается достаточный запас уровня сигнала при углах наклона 60°. При более 60° радиотрассы углах наклонах диаграммы направленности антенн имеют значительные провалы, что может привести к потерям связи [6, 7]. Следует отметить, что для всех сочетаний корреспондирующих объектов при углах наклона более 26,5° запас уровня сигнала начинает снижаться, при углах наклона более 45° темп снижения запаса уровня сигнала увеличивается. С учетом допустимых углов крена и тангажа, возникающих при эволюциях БЛА ВТ, рекомендовано ограничить допустимый наклон трассы в диапазоне углов 30-45°.

Варианты реализации ретранслятора на БЛА-ВТ

Для реализации функции ретранслятора на БЛА-ВТ предложено два варианта:

- ретранслятор как отдельный вид полезной нагрузки (ПН);
- ретранслятор как функция штатной бортовой аппаратуры связи.

Схемы переключения аппаратуры БЛА ВТ для разных вариантов реализации ретранслятора приведены на рис. 2 и 3. В табл. 6 приведено сравнение вариантов реализации ретранслятора.

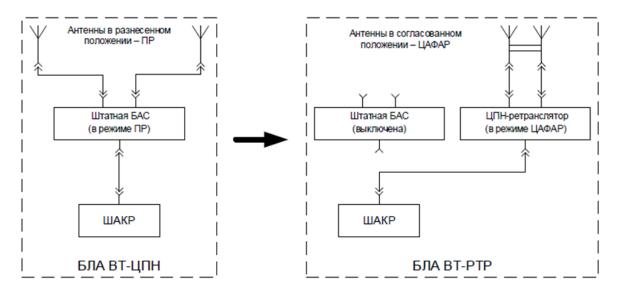


Рис. 2. – Схема переключения аппаратуры БЛА ВТ для реализации ретранслятора – вариант 1

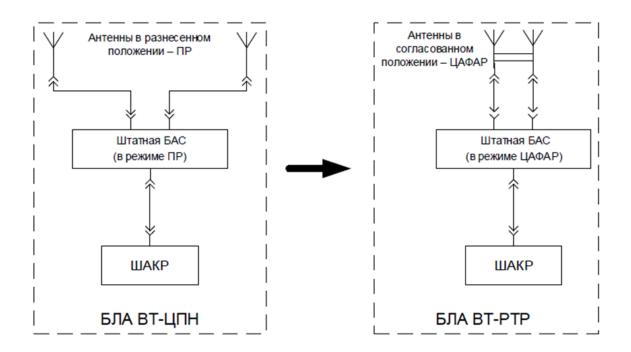


Рис. 3. — Схема переключения аппаратуры БЛА ВТ для реализации ретранслятора - вариант 2

Таблица № 6 Сравнение вариантов реализации ретранслятора

Производимые действия	Вариант 1 Ретранслятор как отдельный вид ПН	Вариант 2 Ретранслятор как функция штатной БАС
Выключение штатной БАС	Требуется	Не требуется
Монтаж приемопередающей аппаратуры ретранслятора	Требуется дополнительный комплект приемопередающей аппаратуры идентичной штатной БАС	Не требуется, режим ретранслятора включается программно
Подключение питания приемопередающей аппаратуры ретранслятора	Требуется	Не требуется
Переподключение шифровальной аппаратуры комплекса радиосвязи	Требуется	Не требуется

Заключение

Анализ действий, необходимых для переоборудования БЛА ВТ из носителя ПН (видеокамера, РЛС, и т.п.) в ретранслятор показал, что вариант 2 — ретранслятор, как функция штатной БАС, существенно проще и экономичнее в реализации, менее трудоемок в эксплуатации, не требует дополнительного комплекта приемопередающей аппаратуры, чем выгодно отличается от варианта 1 — ретранслятора, как отдельного вида ПН [8 — 10].

Штатная бортовая аппаратура связи обеспечивает функцию ретрансляции сигнала при установке соответствующего программного режима, поэтому ретранслятор исключен из состава целевой нагрузки. Такое решение позволило сократить стоимость комплекса в серийном

производстве, а также существенно снизить трудоемкость подготовки комплекса к выполнению задач при эксплуатации.

Литература

- 1. Прокис Джон. Цифровая связь. Пер. с англ. / Под ред. Д.Д Кловского. М.: Радио и связь. 2000. 800 с.:ил.
- 2. Воскобойников Ю. Е., Гочаков А.В., Колкер А.Б. Фильтрация сигналов и изображений: фурье и вейвлет-алгоритмы. М.: Наука. 2010. 195 с.
- 3. Ред. Воскресенский Д.И. Проектирование фазированных антенных решеток. Изд. 4, перераб. и доп. 2012. 744 с.
- 4. Shu Lin, Costello D. Error control coding 2nd Edition// Pearson Education Inc, 2004. pp. 1886
- 5. Horlin F., Bourdoux A. Digital compensation for analog front-ends: a new approach to wireless transceiver design // John Wiley & Sons, 2008. 253 p.
- 6. Nezami M. K. et al. RF architectures & digital signal processing aspects of digital wireless transceivers // Draft. 2003. 516 p.
- 7. Коновалов А.С. Особенности построения системы специальной связи на базе волоконно-оптических линий // Инженерный вестник Дона. 2025. № 1. URL: ivdon.ru/magazine/archive/n5y2023/8380/.
- 8. Русина А.А. Прогнозирование рисков внедрения электронного контента в информационное обеспечение беспилотных авиационных систем// Инженерный вестник Дона. 2025. № 1. URL: ivdon.ru/ru/magazine/archive/n1y2025/9801/.
- 9. Анцев И.Г., Бундин Г.Г. Современные тенденции разработки авиационных бортовых цифровых устройств. СПб.: СИНЭЕЛ, 2019. 94 с.
- 10. Анцев И.Г. Текущее состояние и перспективы развития беспилотных авиационных систем АО «НПП «Радар ммс» // Безопасность информационных технологий. 2024. Т. 31. №1. С. 21-29.

References

- Proakis John Cifrovaya svyaz'. [Digital communication] Per. s angl Pod red.
 D.D Klovskogo. M.: Radio i svyaz'. 2000. 800 p.:il.
- 2. Voskoboynikov Yu.E., Gochakov A.V., Kolker A.B. Filtracia signalov i izobrazheniy [Signals and images filtration. Fourier and wavelet algorithms]. Moskva, 2010. 195 p.
- 3. Red. Voskresenskij D.I. Proektirovanie fazirovannyh antennyh reshetok [Phased arrays designing]. Izd. 4, pererab. i dop 2012. 744 p.
- 4. Shu Lin, Costello D. Error control coding 2nd Edition. Pearson Education Inc. 2004, 1886 p.
- 5. Horlin F., Bourdoux A. Digital compensation for analog front-ends: a new approach to wireless transceiver design. John Wiley & Sons, 2008. 253 p.
- 6. Nezami M. K. et al. RF architectures & digital signal processing aspects of digital wireless transceivers. Draft, 2003. 516 p.
- 7. Konovalov A.S. Inzhenernyj vestnik Dona, 2025. № 1. URL: ivdon.ru/magazine/archive/n5y2023/8380/.
- 8. Rusina A.A. Inzhenernyj vestnik Dona, 2025. № 1. URL: ivdon.ru/ru/magazine/archive/n1y2025/9801/.
- 9. Ancev I.G., Bundin G.G. Sovremennye tendencii razrabotki aviacionnyh bortovyh cifrovyh ustrojstv [Modern trends of on-board aviation digital devices]. Sankt-Peterburg, 2019. 94 p.
- 10. Ancev I.G. Bezopasnost' informacionnyh tekhnologij. 2024. V.31. №1. pp. 21-29.

Дата поступления: 8.04.2024

Дата публикации: 13.05.2025