Оптимизационное моделирование энергосберегающего проекта

Е.В. Куц, С.Ю. Кадокова, А.А. Андреенко

Санкт-Петербургский государственный архитектурно-строительный университет

Аннотация: Уменьшение потребления тепловых ресурсов в строительстве и жилищно-коммунальном хозяйстве является одной из ключевых задач, решаемых инженерами-проектировщиками. Увеличение тепловой защиты зданий определяется нормативными документами, но заказчики строительства зачастую требуют ее усиления без какого-либо технико-экономического обоснования. Задачей исследования является разработка графо-аналитической модели, анализ которой позволяет выбрать наиболее оптимальное сочетание теплосопротивлений покрытия (стен) и светопрозрачных конструкций конкретного строительного объекта

Ключевые слова: энергосберегающий проект, тепловая защита зданий, кривые «безразличия», метод наискорейшего спуска.

Одной из составляющих расходов потребителей за отопление жилых, общественных производственных зданий является И оплата трансмиссионных потерь тепловой энергии. Эти потери обусловлены физическими процессами, происходящими в помещениях: конвективным и лучистым теплообменом, теплопроводностью стационарном изменяющихся во времени режимах. В теорию и практику их изучения внесли существенный вклад отечественные ученые В. Н. Богословский [1], В. К. Савин [2], Ю. А. Табунщиков [3], К. Ф. Фокин [4]. Однозначно определено, что минимально допустимое сопротивление теплопередаче ограждений обуславливается санитарно-гигиеническими требованиями к температуре их внутренних поверхностей. Это сопротивление, вычисленное по формуле СП 131.13330.2012 «Тепловая защита зданий» для стандартного жилого помещения, расположенного в Санкт-Петербурге, равно 1,26 м²°C/Вт, что значительно ниже, чем требуемая величина в 2,97 м²°C/Вт, вычисленная уже по градусосуткам отопительного периода. Последняя методика является обязательной при проектировании тепловой защиты зданий, в том числе и при обосновании инвестиций в энергосберегающие проекты.

В связи с вышеизложенным, возникает вопрос о выборе такого сопротивления теплопередаче ограждения, которое не только соответствовало бы санитарным нормам, но и сохраняло максимально возможное количество тепловой энергии в отопительный период при ограничениях в затратах на утепление стен, покрытий, светопрозрачных конструкций.

проблеме Вышеназванной посвящены И текущие публикации профильных Так, авторы [5] обосновывают журналов. повышение требуемого сопротивления теплопередаче стен в России ДО уровня Финляндии (почти в два раза). При этом вычислено, что за 10 лет жильцы переплачивают 18 млн рублей по сравнению со своими виртуальными контрагентами в Финляндии. Увеличение толщины слоя теплоизоляции в два раза, а, следовательно, и стоимости строительства в расчет не берется. В [6] соавтор предыдущей статьи приводит расчетные значения сроков окупаемости энергосберегающего проекта в 15 лет. В обзорной статье [7] специалист из Финляндии дает сведения о сопротивлении теплопередаче стен и расхода тепловой энергии на отопление зданий. Так, в Норвегии и Швеции приняты значения: $R = 5.56 \text{ м}^2 \text{ °C/BT}$ для стен и $R = 7.69 \text{ м}^2 \text{ °C/BT}$ для покрытий.

Тенденцию к повышению теплозащитных свойств ограждающих конструкций поддерживает известный специалист В. И. Ливчак [8-10].

Профессор В. Г. Гагарин в своих работах не так категоричен [11]. Он обращает внимание на отсутствие в технических источниках анализа сопоставимости зарубежного опыта с отечественной действительностью. Авторы [12, 13] предлагают методики оценки экономической целесообразности уровня теплозащиты ограждающих конструкций здания, базирующиеся на понятии чистого дисконтированного дохода. Президент АВОК Ю. А. Табунщиков в одной из своих многочисленных статей [14]

оправданно заметил, что вовсе не сравнение с зарубежными нормативами является причиной повышения уровня теплозащиты зданий. Объективно обоснованная величина сопротивления ограждающих конструкций зависит от стоимости тепловой энергии и стоимости устройства таких конструкций. Именно путем аргументации экономической целесообразности необходимо выбирать уровень тепловой защиты, а не по формулам, содержащим ГСОП, периода, который был определён профессором К. Ф. Фокиным в середине прошлого столетия при рассмотрении стены, выполненной из кирпичной кладки толщиной 0,64 м.

Исходя из вышеизложенного краткого обзора технической литературы, онжом сформулировать следующие положения: сопротивление теплопередаче ограждающей конструкции должно ПО минимуму соответствовать санитарным нормам ПО температуре внутренних поверхностей помещения; требования по тепловой защите непрерывно без какого-либо научного обоснования; ужесточаются отсутствует методологический подход к нормированию тепловой защиты зданий; не учитывается фактор долговечности – учёт жизненного цикла стеновых материалов; отсутствует методология управления процессами энергосбережения в строительном и жилищно-коммунальном комплексе.

В данной работе предпринята попытка использовать методы математического моделирования для обоснования выбора оптимальной тепловой защиты зданий. Цель исследования – совершенствование методов расчета, связанных с сопротивлением теплопередаче ограждающих конструкций.

Методологической основой исследования является математическое моделирование, себя построение включающее В И анализ детерминированных аналитических выражений, характеризующих теплозащитные свойства ограждающих конструкций. Эти свойства характеризуют трансмиссионные тепловые потери зданий через покрытия, стены и окна, которые вычисляются по формуле:

$$Q = (t_{\rm B} - t_{\rm H}) \left(\frac{F_{\rm CT}}{R_{\rm CT}} + \frac{F_{\rm CBT}}{R_{\rm CBT}} + \frac{F_{\rm H}}{R_{\rm H}} \right), \tag{1}$$

где $t_{\rm B}$, $t_{\rm H}$ — температуры внутреннего и наружного воздуха, °C; $F_{\rm cT}$, $F_{\rm cBT}$, F_n , — площади стен, светопрозрачных конструкций и покрытий, м²; $R_{\rm cT}$, $R_{\rm cBT}$, $R_{\rm II}$ — значения сопротивлений теплопередаче ограждающих конструкций (стен и окон и покрытия), м²°С/Вт.

Для дальнейшего анализа необходимо построить так называемое поле кривых безразличия. Это понятие заимствовано из курса экономической теории [15]: если мы имеем функцию вида $y = f(x_1, x_2)$, то множество сочетаний аргументов x_1 и x_2 образует множество кривых, имеющих одно и то же значение y (рис.1). Распространению этой теории в практику анализа тепловой защиты здания посвящен ряд статей авторов настоящей работы, напечатанных в реферируемых изданиях [16, 17, 18, 19].

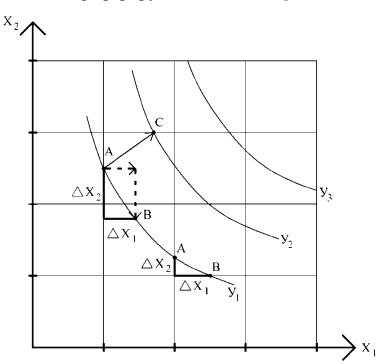


Рис. 1. – Общий вид кривых безразличия функции вида $y = f(x_1, x_2)$

Если мы придадим аргументам (попарно) значения коэффициентов сопротивления теплопередаче ограждающих конструкций, то функция от этих новых аргументов будет определять тепловые потери здания через эти конструкции, например, $Q = f(R_{\rm cr}, R_{\rm cr})$ и $Q = f(R_{\rm l}, R_{\rm cr})$.

Кривая безразличия, лежащая выше и правее другой кривой, потребителя предпочтительней ДЛЯ (B нашем случае характеризует наименьшее потребление тепловой энергии). Для перехода от точки A к точке $C(y_2 < y_1)$ необходимо изменить в сторону увеличения или x_1 или x_2 , или x_1 и x_2 одновременно. Все наборы значений x_1 и x_2 , лежащие на кривой «равноценны». Предельной нормой замещения (ПНЗ) величиной x_1 величины x_2 , называется количество x_2 , которое должно быть сокращено «в обмен» на увеличение количества x_1 на единицу, чтобы функция y_1 оставалась постоянной. Согласно рис. 1:

$$\Pi H3 = -\frac{\Delta x_2}{\Delta x_1}, при y_i = const.$$
 (2)

На рис. 1 видно, что предельная норма замещения при движении вдоль кривой y_1 вправо-вниз уменьшается и наоборот.

Рассмотрим качестве примера тепловую защиту многофункционального спортивного комплекса. В первичном варианте покрытие спортивного зала осуществлялось с помощью воздухоопорного быстровозводимого купола. В качестве второго варианта было предложено стационарные конструкции: утепление выполнить ПО деревянным многопролетным деревянным балкам (слой 200 мм плиты «Rockwool»), крыша двускатная общей площадью 2880 м^2 , коэффициент остекления f=0,2(мансардные окна).

Примем значения $R_{\text{свт}}$ светопрозрачных конструкций равным 0,4; 0,5; 0,6 м²°С/Вт и, задаваясь величинами теплопотерь по формуле (1), вычислим соответствующие значения R покрытия стадиона. Результаты расчета

приведены в табл. №1, а графики «линий безразличия» теплопотерь при различных сочетаниях R и $R_{\text{свт}}$ показаны на рис.2.

Таблица № 1 Расчет сопротивления R покрытия. м²°С/Вт

Tac let comportableman R norphitan, w C/D1								
<i>Q</i> , Вт <i>R</i> свт, м ² °С/Вт	70000	80000	90000	100000	110000	120000	130000	140000
0,4	10,16	4,95	3,28	2,45	1,95	1,62	1,39	1,22
0,5	4,47	3,06	2,32	1,87	1,57	1,35	1,19	1,06
0,6	3,20	2,44	1,97	1,62	1,39	1,21	1,08	0,97

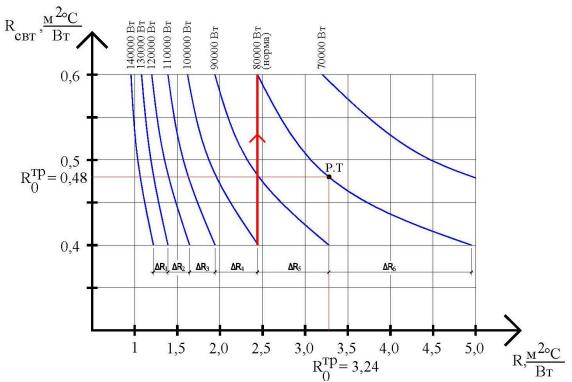


Рис. 2. — Теплопотери через покрытие при сочетании значений R и $R_{\mbox{\tiny CBT}}$

Семейство кривых «безразличия» $Q = f(R_{\text{свт}}, R)$ является графическим воплощением аналитической модели теплопотребления (1). С помощью графиков на рис.2 возможен выбор оптимальной стратегии утепления покрытия. Графоаналитическая модель показывает, что по мере перемещения процесса улучшения справа-налево, нам приходится увеличивать слой изоляции все больше и больше ($\Delta R_6 >> \Delta R_1$). Можно сказать, что «полезность» каждого нового слоя тепловой изоляции, вследствие ее удорожания,

уменьшается. Так как сопротивления у нас подсчитаны, то вычислим приращения их величины в зависимости от $R_{\text{свт}}$ (табл. №2) и построим соответствующий график, показанный на рис. 3.

Таблица № 2 Расчет прирашений сопротивления *ДR*. м²°С/Вт

т ас тет приращении сопротивлении дл, м с/вт							
Q_i - Q_i	i-1 ,						
\ I	Вт 140000-	130000-	120000-	110000-	100000-	90000-	80000-
R_{CBT} ,	130000	120000	110000	100000	90000	80000	70000
м ² °C/Вт							
0,4	0,17	0,23	0,33	0,5	0,83	1,67	5,21
0,5	0,13	0,16	0,22	0,3	0,45	0,74	1,41
0,6	0,11	0,13	0,18	0,23	0,32	0,5	0,76

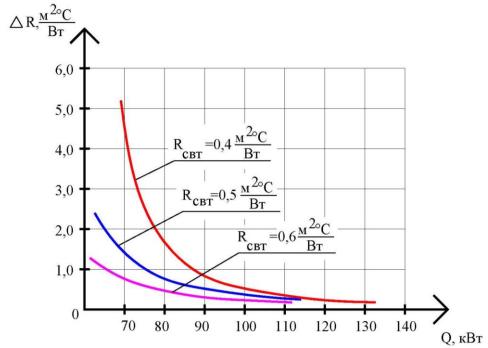


Рис. 3. – Приращение значений теплосопротивления кровли

Если выберем стратегию повышения теплоизоляционных свойств покрытия, изменяя лишь сопротивление теплопередаче окон, то по графику на рис.2 легко можно увидеть, что переход значений шага теплопотерь в 20000 Вт достигается увеличением $R_{\rm CBT}$ на 0,2 м²°С/Вт. Иначе говоря, мы должны от однокамерного обычного стеклопакета перейти к двухкамерному, а затем нанести на стекло низкоэмиссионное покрытие. Такова стратегия

утепления кровли спортзала путем замены светопрозрачных конструкций на более энергосберегающие.

Другой стратегией быть может осуществление процесса одновременного увеличения толщины теплоизоляции покрытия и замены окон, т. е. необходимо менять и R и $R_{\rm cbt}$ одновременно. Функция $Q = f(R, R_{\text{свт}})$ представляет собой криволинейную поверхность, кратчайший «спуск», который из исходной точки приведет нас к все меньшим теплопотерям. Суть метода наискорейшего спуска представлена, например, в [20]. Не вдаваясь в математические выкладки, определим направление $R_{\rm CRT} = 0.4 \, {\rm M}^{20} {\rm C/BT}$ графически, значений исходя ИЗ начальных $R = 1.22 \text{ m}^{2} \text{ C/BT}$ которые соответствуют санитарно-гигиеническим требованиям по температуре внутренней поверхности кровли спортзала. Мысленно спускаясь с «горы», проложим путь перпендикулярно значениям Q, которые в геодезии именовались бы горизонталями. Поскольку наше решение не требует точности, обозначим этот путь зоной приемлемых решений. Она показана на рис. 4 и состоит из пяти шагов улучшения. Первый шаг мы делаем, увеличивая R от 1,22 до 2,1 м²°C/Bт, а $R_{\text{свт}} = 0.4$ до 0.45 м^{2} °C/Вт. Поскольку осуществлен переход с кривой с Q = 140000 Вт на $Q = 100000 \, \text{BT}$, то годовая экономия тепла составляет примерно 88 Гкал. Второй последующий шаги выполняем аналогично. Результаты экономического расчёта сроков окупаемости сведены в таблице №3 (стоимость 1 м^2 теплоизоляции и 1 м^2 мансардных окон – в ценах 2020 г.). Срок окупаемости рассчитан без учета инфляции, которая влияет как на стоимость энергии, отпускаемой теплоснабжающими организациями, так и на капитальные строительные затраты. Вывод по расчетам следующий. Наиболее окупаемым может быть только первый шаг. В дальнейшем рекомендуется поднять $R_{\text{свт}} = 0.45$ до $0.55 \text{ м}^2 \text{ C/Bt}$. «Нормативная» рабочая точка в зону приемлемых решений не входит. Решение о фактический

проектной толщине теплоизоляционного слоя в 200 мм не является оптимальным.

Таблица № 3 Расчет сроков окупаемости дополнительного утепления ограждающих конструкций

NoNo	Интервал теплопотерь ${\cal Q}$, к ${ m BT}$	ΔR , $ m M^{2\circ}C/BT$	$AR_{ m cBT}$, $ m M^{2o}C/BT$	Стоимость дополнительной теплоизоляции и замены окон С=Сизол+Ссвт, руб.	Экономия тепла $AQ_{ m ron}$, Гкал	Экономия средств на отопление, С _Q руб. (экономия)	Примерный срок окупаемости кап. вложений, $\tau = C/C_Q$, годы
1	140÷100	0,88	0,05	162201+225734 =241954	88 176000		1,37
2	100÷90	0,4	0,025	73728+112838 =186566	22	44000	4,24
3	90÷80	0,4	0,045	73728+203155 =276883	1 22 1 44000		6,29
4	80÷70	0,6	0,055	110592+248256 =358848	22	44000	8,16

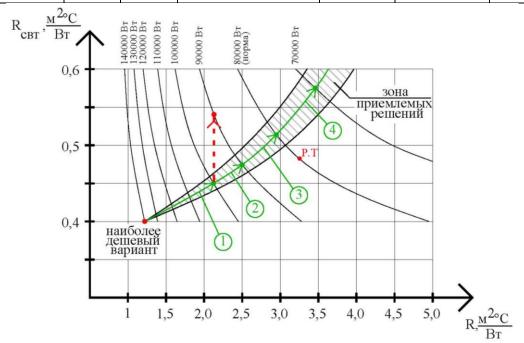


Рис.4. – Определение стратегии утепления покрытия

Вышепредставленная модель позволяет разобраться не только в качественной картине энергосберегающих мероприятий по конструированию покрытия спортивно-зрелищного сооружения, но и дает методы технико-экономического анализа предложенных вариантов.

С целью оптимального выбора энергосберегающих строительных спортивного конструкций (на примере покрытия зала) предложена графоаналитическая модель зависимости тепловых потерь от широкого ряда значений коэффициентов теплового сопротивления R и $R_{\text{свт}}$. Анализ полученной модели позволил определить оптимальные направления проектирования, при которых последовательно улучшаются теплофизические характеристики покрытия и мансардных окон.

Литература

- 1. Богословский В. Н. Строительная теплофизика (теплофизические основы отопления, вентиляции и кондиционирования воздуха). Учебник для вузов, 3-е изд. СПб. АВОК-С-Запад, 2000. 400 с.2.
- 2. Савин В.К. Строительная физика: энергоперенос, энергоэффективность, энергосбережение. М.: Лазурь, 2005. 432 с.
- 3. Табунщиков Ю.А., Бродач М.М. Математическое моделирование и оптимизация тепловой эффективности зданий. М.: АВОК-ПРЕСС. 2002. 194 с.
- 4. Фокин К.Ф. Строительная теплотехника ограждающих конструкций зданий (под ред. Табунщикова Ю.А., Гагарина В.Г.). М.: АВОК-ПРЕСС. 2006. 256 с.
- Горшков А.С., Немова Д.В., Рымкевич П.П. Экономим или нет?
 Российские энергосберегающие требования // Энергосбережение. 2014. № 2.
 С.26-32.
- 6. Горшков А.С. Капитальный ремонт и энергосбережение в многоквартирных домах. Инженерные системы. 2017. №3. С.58-60.

- 7. Сеппанен О. Требования к энергоэффективности зданий в странах ЕС // Энергосбережение. 2010. № 7. С.32-37.
- 8. Ливчак В.И. Почему СП 50-13330-2012 «Тепловая защита зданий» приводит к снижению энергоэффективности зданий и как выполнить постановление Правительства России об их повышении // Инженерные системы. 2013. № 3. С.10-27.
- 9. Ливчак В.И. Экономическая оптимизация теплозащиты зданий. ABOK. 2015. №6. С.64-66.
- 10. Ливчак В.И. Сопоставление норм тепловой защиты и энергетической эффективности зданий в Республике Беларусь, России и странах Северной Европы. Инженерные системы. 2017. №1. С.38-48.
- 11. Гагарин В.Г. Методы экономического анализа повышения уровня теплозащиты ограждающих конструкций зданий //АВОК. 2009. № 1. С.10-17, №2. С.32-37, №3 С.14-23.
- 12. Васильев Г.П., Личман В.А. Эффективный уровень теплозащиты зданий с учетом стоимости жизненного цикла // ABOK. 2015. № 6. С.54-61.
- 13. Ковалев И.Н. Об окупаемости и рентабельности долгосрочных инвестиций // Энергосбережение. 2014. № 6. С.14-16.
- 14. Табунщиков Ю.А. (2014). В поисках истины // АВОК. 2015. №6. С.4-8.
- 15. Гальперина В.М., Желтякова И.А., Игнатьев С.М., Моргунов В.И. Цены и ценообразование в рыночной экономике. Теория цены / под ред. В.М. Гальперина, В.В. Есипова. СПб. Изд-во СПб УЭФ. 1992. 233 с.
- 16. Стахов А.Е., Андреенко А.А. Экономическая оценка конструктивных решений тепловой защиты зданий //АВОК. 2018. №4. С.42-45.

- 17. Стахов А.Е., Кадокова С.Ю., Андреенко А.А. Оценка конструктивных решений по тепловой защите зданий экономическими методами. Вестник гражданских инженеров. СПбГАСУ. 2018 №3. С.219-222.
- 18. Стахов А.Е., Фролькис В.А., Кадокова С.Ю., Андреенко А.А. Экономико-математический анализ тепловой защиты зданий. Вестник гражданских инженеров. СПбГАСУ. 2019. №3. С.107-112.
- 19. Куц Е.В., Кадокова С.Ю., Андреенко А.А. Метод техникоэкономического обоснования инвестиционного энергосберегающего проекта. Инженерный вестник Дона. 2021. URL: ivdon.ru/ru/magazine/archive/n5y2021/6980.
- 20. Диксон Дж. Проектирование систем: изобретательство, анализ, принятие решений. М.: Мир. 1969. 440 с.

References

- 1. Bogoslovskiy V. N. Stroitel'naya teplofizika (teplofizicheskie osnovy otopleniya, ventilyatsii i konditsionirovaniya vozdukha) [Construction thermophysics (thermophysical basics of heating, ventilation and conditioning)]. Textbook for universities, 3rd ed. SPb., AVOK-S-Zapad, 2000. 400 p.
- 2. Savin V. K. Stroitel'naya fizika: energoperenos, energoeffektivnost', energosberezhenie [Building physics: energy transfer, energy efficiency, energy saving]. M.: "lazur' ", 2005. 432 p.
- 3. Tabunshhikov Yu.A., Brodach M.M. Matematicheskoe modelirovanie i optimizaciya teplovoj e`ffektivnosti zdanij [Mathematical modeling and optimization of thermal efficiency of buildings]. M.: AVOK-PRESS. 2002. 194 p.
- 4. Fokin K.F. Stroitel`naya teplotexnika ograzhdayushhix konstrukcij zdanij (pod red. Tabunshhikova Yu.A., Gagarina V.G.) [Building heat engineering of building envelopes]. M.: AVOK-PRESS. 2006. 256 p.

- 5. Gorshkov A.S., Nemova D.V., Ry`mkevich P.P. E`nergosberezhenie. 2014. № 2, pp.26-32.
 - 6. Gorshkov A.S. Inzhenerny'e sistemy'. 2017. №3, pp.58-60.
 - 7. Seppanen O. E`nergosberezhenie. 2010. № 7, pp.32-37.
 - 8. Livchak V.I. Inzhenerny'e sistemy'. 2013. № 3, pp.10-27.
 - 9. Livchak V.I. AVOK. 2015. №6, pp.64-66.
 - 10. Livchak V.I. Inzhenerny'e sistemy'. 2017. №1, pp.38-48.
- 11. Gagarin V.G. AVOK. 2009. № 1, pp.10-17, №2, pp.32-37, №3, pp.14-23.
 - 12. Vasil'ev G.P., Lichman V.A. AVOK. 2015. № 6, pp.54-61.
 - 13. Kovalev I.N. E`nergosberezhenie. 2014. № 6, pp.14-16.
 - 14. Tabunshhikov Yu.A. AVOK. 2015. №6, pp.4-8.
- 15. Gal`perina V.M., Zheltyakova I.A., Ignat`ev S.M., Morgunov V.I. Ceny` i cenoobrazovanie v ry`nochnoj e`konomike. Teoriya ceny` [Prices and pricing in a market economy. Price theory]. Pod red. V.M. Gal`perina, V.V. Esipova. SPb.: Izd-vo SPb UE`F. 1992. 233 p.
 - 16. Staxov A.E., Andreenko A.A. AVOK. 2018. №4, pp.42-45.
- 17. Staxov A.E., Kadokova S.Yu., Andreenko A.A. Vestnik grazhdanskix inzhenerov. SPbGASU. 2018 №3, pp.219-222.
- 18. Staxov A.E., Frol`kis V.A., Kadokova S.Yu., Andreenko A.A. Vestnik grazhdanskix inzhenerov. SPbGASU. 2019. №3, pp.107-112.
- 19. Kucz E.V., Kadokova S.Yu., Andreenko A.A. Inzhenernyi vestnik Dona. 2021. №5. URL: ivdon.ru/ru/magazine/archive/n5y2021/6980.
- 20. Dikson Dzh. Proektirovanie sistem: izobretatel`stvo, analiz, prinyatie reshenij [System Design: Invention, Analysis, and Decision Making]. M.: Mir. 1969. 440 p.