Направленный ответвитель на ферритовых кольцах

A.B. Андрианов 1 , E.A. Баталова 2 , Д.Е. Губарев 1 , A.H. Зикий 2

 1 Таганрогский научно-исследовательский институт связи, Таганрог 2 Южный Федеральный Университет, Таганрог

Аннотация: Проведено моделирование и экспериментальное исследование направленного ответвителя с трансформаторами на ферритовых кольцах. Диапазон рабочих частот составляет от 100 до 500 МГц. Моделирование направленного ответвителя проводилось в пакете прикладных программ Microwave Office. Экспериментальное исследование проводилось с помощью векторного анализатора цепей типа «Обзор-103». Получены частотные зависимости рабочего затухания и переходного ослабления. Направленный ответвитель может быть использован в приёмо-передающей и измерительной технике.

Ключевые слова: Направленный ответвитель, рабочее затухание, переходное ослабление, развязка, схема, конструкция.

Введение

В приёмо-передающей аппаратуре и измерительной технике широко используется направленные ответвители [1-6]. В дециметровом диапазоне волн используются направленные ответвители на полосковых [1,2].В микрополосковых линиях миллиметровом диапазоне волн используются волноводные направленные ответвители [3]. В диапазоне метровых и более длинных волн используются направленные ответвители на сосредоточенных элементах. Объектом исследования в данной работе является направленный ответвитель на ферритовых кольцах [7]. Предметом исследования являются основные характеристики: рабочее затухание, переходное ослабление, направленность.

К направленному ответвителю предъявляются следующие требования:

- диапазон рабочих частот от 100 до 500 МГц;
- рабочее затухание не более 1,5 дБ;
- переходное ослабление 15±1,5 дБ;
- направленность не менее 30 дБ;
- волновое сопротивление 50 Ом;
- соединители − тип III по ГОСТ20265–83, гнездо;

максимально допустимая входная мощность 1 Вт.

Схема и конструкция

Схема НО приведена на рисунке 1, а основные геометрические размеры составных частей – в таблице 1.

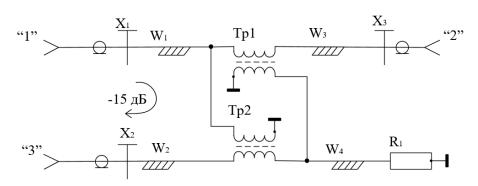


Рис. 1. – Принципиальная схема НО

Таблица № 1 Геометрические размеры НО на ферритовых кольцах

Позиционное обозначение	Длина проводника, мм	Ширина проводника, мм	Толщина проводника, мм	Наименование	
w_1	11	2	0,05	Полосковая линия	
w_2	11	2	0,05	Полосковая линия	
w_3	11	2	0,05	Полосковая линия	
w_4	6	2	0,05	Полосковая линия	
$Tp_1 \\ Tp_2$				Трансформаторы на ферритовых кольцах	
R_1	49,9			Резистор балластный, Ом Тип С2-10-0,25	
$x_1 - x_3$	Тип III по ГОСТ20265		Γ20265	Коаксиально-полосковые, переходы	
	15×40×1,5			Печатная плата в трех местах соединена с корпусом	

На печатной плате расположены 2 ферритовых кольца с обмотками, полосковые линии $w_1 - w_4$ и резистор R_1 типа C2-10-0,25-49,9 Ом. Этот резистор помещён в экран цилиндрической формы длиной 7 мм и диаметром 4 мм.

Соединители, выполненные по типу III по ГОСТ20265-83, закреплены на корпусе рамочного типа с помощью гаек. Центральный проводник соединителей $x_1 - x_3$ припаян к полосковым линиям $w_1 - w_3$ припоем ПОС61. Корпус закрывается двумя металлическими крышками с помощью двух винтов М3. Конструкция не герметична и предназначена для эксплуатации в лабораторных условиях. Фото НО со снятыми крышками можно видеть на рисунке 2.

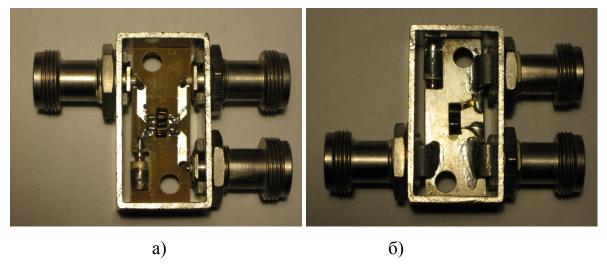


Рис. 2. – Фото НО со снятыми крышками: а) вид сверху; б) вид снизу

Такие НО используются в составе прибора С4-60 [7].

Широкополосность НО определяется полосой пропускания трансформаторов Tp_1 , Tp_2 .

Моделирование

Моделирование НО проводилось в пакете прикладных программ Microwave Office (MWO) [8]. Модель НО представлена на рисунке 3. Рабочее

затухание S21 из MWO показано на рисунке 4. Переходное ослабление S31 из MWO можно видеть на том же рисунке.

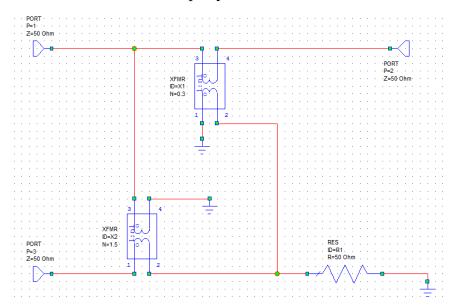


Рис. 3. – Модель направленного ответвителя в MWO

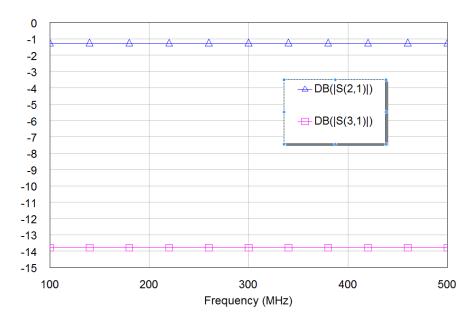


Рис. 4. – Рабочее затухание (S21) и переходное ослабление (S31) при моделировании в МWO

Эксперимент

Эксперимент проводился на установке, содержащей векторный анализатор цепей типа «Обзор-103», ноутбук, согласованную нагрузку с соединителем типа III, набор кабелей. Для измерения рабочего затухания «Обзор-103» подключался к портам 1 и 2. Для измерения направленности (развязки) «Обзор-103» подключался к портам 2 и 3. Неподключенный к «Обзору-103» вход/выход подключался к согласованной нагрузке. Результаты измерений представлены на рисунках 5-7.

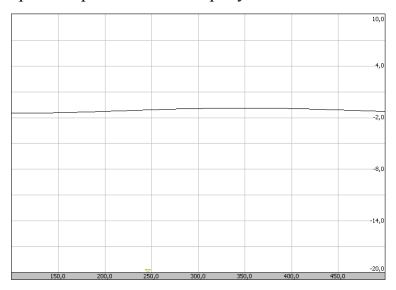


Рис. 5. – Рабочее затухание направленного ответвителя

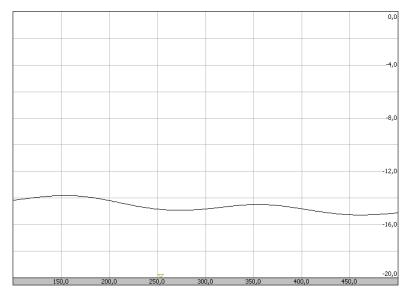


Рис. 6. – Переходное ослабление направленного ответвителя

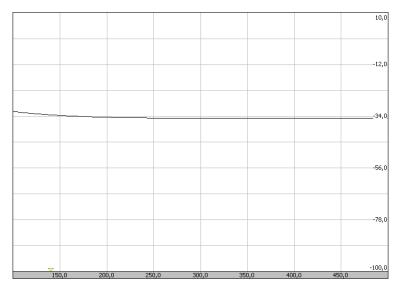


Рис. 7. – Направленность ответвителя в полосе от 100 до 500 МГц

Выводы

В таблице 2 приведены основные электрические параметры направленного ответвителя при моделировании и в эксперименте.

Таблица № 2 Основные параметры ответвителя

Наименование параметра, размерность	Задано	Моделирование	Эксперимент
Диапазон рабочих частот, МГц	100-500	100-500	100-500
Рабочее затухание, дБ	1±0,5	1,3	1,25±0,25
Переходное ослабление, дБ	15±1,5	13,8	14,5±0,7
Волновое сопротивление входа/выходов, Ом	50	50	50
Соединитель по ГОСТ20265- 83	Тип III	Тип III	Тип III
Максимально допустимая входная мощность, Вт	1	-	-
Направленность, дБ	≥30	-	31

Из этой таблицы видно, что все заданные параметры ответвителя достигнуты.

При выполнении данной работы были использованы книги [3-8], статьи [9,10], а также предыдущая работа авторов [1].

Литература

- 1. Андрианов А.В., Губарев Д.Е., Зикий А.Н., Сленчковский В.Г. Направленный ответвитель на связанных полосковых линиях // Инженерный вестник Дона, 2018, № 4 URL:ivdon.ru/ru/magazine/archive/n4y2018/5266
- 2. Пищенко М.Г., Пищенко Д.Г., Мануилов М.Б. Сверхоктавный полосковый направленный ответвитель для работы на высоком уровне мощности // Инженерный вестник Дона, 2018, № 4. URL:ivdon.ru/ru/magazine/archive/n4y2018/5239
- 3. Шаров Г.А. Волноводные устройства сантиметровых и миллиметровых волн. М.: Горячая линия Телеком, 2016. 640 с.
- 4. Лондон С.Е., Томашевич С.В. Справочник по ВЧ трансформаторным устройствам М.: Радио и связь, 1984. 216 с.
- 5. Шумилин М.С., Козырев В.Б., Власов В.А. Проектирование транзисторных каскадов передатчиков. Учебное пособие М.: Радио и связь, 1987. –320 с.
- 6. Ред Э. Справочное пособие по ВЧ схемотехнике М.: Мир, 1990. 256 с.
- 7. Анализатор спектра C4-60. Техническое описание и инструкция по эксплуатации. EЭ1.406.05TO. Часть 2. (Приложения). 228 с.
- 8. Разевиг В.Д., Потапов Ю.В., Курушин А.А. Проектирование СВЧ устройств с помощью Microwave Office М.: Солон-Пресс, 2003. 496 с.
- 9. DAS. A.C. A Compact Branch-Line Couper Using Folded Microstrip Lines//Das/ A/C/, L/Murmu, S/Dwari//IEEEMicrow/ WirelessCompon. Lett. Dec/ 2013, V.10, №7, pp.1-3.
- 10. Tsai, K.-Yu. A miniaturized 3dB branch-line hybrid coupler with harmonics suppression//K.-Yu Tsai. H.-Sh Yang, j. H. Chen, Yi-j.E. Chen//IEEE Microw. Wireless Compon. Lett. Oct. 2011. V.21, № 10, pp. 537-539.

References

- 1. Andrianov A.V., Gubarev D.E., Zikiy A.N., Slenchkovskiy V.G. Inženernyj vestnik Dona (Rus), 2018, № 4. URL:ivdon.ru/ru/magazine/archive/n4y2018/5266
- 2. Pishchenko M.G., Pishchenko D.G., Manuilov M.B. Inženernyj vestnik Dona (Rus), 2018, № 4. URL:ivdon.ru/ru/magazine/archive/n4y2018/5239
- 3. Sharov G.A. Volnovodnye ustroystva santimetrovykh i millimetrovykh voln [Waveguide centimeter and millimeter waves]. M.: Goryachaya liniya Telekom, 2016. 640 p.
- 4. London S.E., Tomashevich S.V. Spravochnik po VCh transformatornym ustroystvam [Handbook of RF Transformer Devices]. M.: Radio i svyaz', 1984. 216 p.
- 5. Shumilin M.S., Kozyrev V.B., Vlasov V.A. Proektirovanie tranzistornykh kaskadov peredatchikov [Transistor Transmit Stage Design]. Uchebnoe posobie M.: Radio i svyaz', 1987. 320 p.
- 6. Red E. Spravochnoe posobie po VCh skhemotekhnike[Reference RF circuit design] M.: Mir, 1990. 256 p.
- 7. Analizator spektra S4-60. Tekhnicheskoe opisanie i instruktsiya po ekspluatatsii [Spectrum analyzer C4-60. Technical specification and maintenance instruction]. EE1.406.05TO Part 2. (Prilozheniya). 228 p.
- 8. Razevig V.D., Potapov Yu.V., Kurushin A.A. Proektirovanie SVCh ustroystv s pomoshch'yu Microwave Office [Designing microwave devices with Microwave Office] M.: Solon-Press, 2003. 496 p.
- 9. DAS. A.C. A Compact Branch-Line Couper Using Folded Microstrip Lines Das A C, L Murmu, S Dwari IEEEMicrow WirelessCompon. Lett. Dec 2013, V.10, №7, pp.1-3.
- 10. Tsai, K. Yu. A miniaturized 3dB branch-line hybrid coupler with harmonics suppression K.-Yu Tsai. H.-Sh Yang, j. H. Chen, Yi-j.E. Chen IEEE Microw. Wireless Compon. Lett. Oct. 2011. V.21, № 10, pp. 537-539.