Прогнозирование поступлений федеральных налогов и сборов при помощи эк онометрическ ого моделирования

Т.О. Графова, К.В. Колесникова Российская таможенная академия (Ростовский филиал), Ростов-на-Дону

Аннотация: Рассматривается проблема экономического прогнозирования объёмов поступлений федеральных налогов и сборов на примере Южного федерального округа. Была построена эконометрическая модель ряда с введением фиктивных переменных. По данным с 01.01.2018 по 31.03.2020 гг. осуществлен прогноз на два последующих месяца. Ключевые слова: налоги, сборы, прогнозирование, доходы федерального бюджета, бюджетная система, мультипликативная модель, фиктивные переменные.

В настоящее время можно говорить о применении экономических прогнозов как об одном из основных способов определения приоритетных направлений развития экономических систем [1,2].Так, оценка эффективности решений области принятых экономических В налогообложения благодаря возможной экономикостановится математическим прогнозам поступлений налогов и сборов в бюджетную систему государства.

Формирование доходной части федерального бюджета выступает одной из основополагающих целей функционирования Федеральной налоговой службы. Среди федеральных налогов и сборов выделяют: налог на организаций, физических прибыль налог на доходы ЛИЦ (НДФЛ), государственная пошлина, налог на добавленную стоимость (НДС), акциз, налог на добычу полезных ископаемых, водный налог, и другие налоги и сборы [3].

По своей сути доходы федерального бюджета являются экономическими отношениями между государством и налогоплательщиками (плательщиками сборов), которыми признаются как юридические организации, так и физические лица. А потому, ведение статистики поступлений федеральных налогов и сборов и, в частности, прогнозирование

объемов налоговых сборов занимает одну из ключевых ролей в деятельности налоговых органов.

Налоговое прогнозирование является оценкой поступлений налогов и сборов в бюджетную систему [4]. Для сферы налогообложения актуальной является проблема эффективного проведения прогнозирования для наиболее точного составления плана налоговых поступлений.

Основной целью данного исследования является осуществление краткосрочного прогноза с использованием эконометрической модели и вводом фиктивных переменных объемов поступлений федеральных налогов и сборов в регионе деятельности Южного федерального округа (далее - ЮФО). Для получения качественных и количественных оценок необходимо учитывать множественные факторы и связи [5,6].

В рамках проводимого исследования необходимо подчеркнуть его новаторскую составляющую, поскольку прогнозирование по данным поступлений федеральных налогов и сборов при помощи эконометрических моделей недостаточно активно используется в практике деятельности налоговых органов.

В ходе данной работы осуществляется эконометрическое временного ряда при помощи введения фиктивных моделирование переменных [7,8]. Благодаря введению фиктивных переменных можно существенно улучшить эконометрическую модель. Фиктивные переменные могут быть равны только 0 или 1, таким образом характеризуя всплески [9]. Эффективность динамичных рядов описанного проиллюстрировать в процессе прогнозирования поступлений федеральных налогов и сборов.

Для осуществления краткосрочного прогноза поступлений федеральных налогов и сборов необходимо обратиться к статистическим данным по объемам поступлений федеральных налогов и сборов, а именно,

осуществить выборку по региону деятельности Южного федерального округа и в виде помесячных данных [10] с 01.01.2018 по 31.03.2020 г. Поскольку исходные данные предоставляются нарастающим итогом, необходимо так же посчитать их в чистом виде (табл. 1).

Таблица № 1 Объемы поступлений федеральных налогов и сборов в Южном федеральном округе, млрд. руб.

Месяц	2018	2019	2020		
01	58,61115	61,79969	66,93413		
02	31,53222	37,94343	47,99643		
03	92,14735	93,17075	99,50835		
04	71,30810	91,11556	-		
05	61,71677	42,85397	-		
06	79,05761	70,61285	-		
07	100,30072	113,52680	-		
08	45,24131	57,45158	-		
09	85,74790	78,76581	-		
10	88,95783	92,00446	<u>-</u>		
11	56,66927	64,11950	<u>-</u>		
12	91,31929	107,97540	-		

Первым этапом моделирования временного ряда выступает построение его графика (рис. 1).

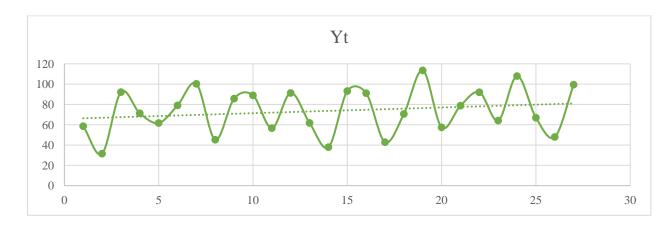


Рис. 1. – Динамика поступлений федеральных налогов и сборов ЮФО, млрд. руб.

Исследовав графическое представление временного ряда на рис.1, делаем вывод о том, что присутствует сезонная составляющая с периодом l=12 и линейного тренда. Далее переходим к использованию мультипликативной модели временного ряда. Таким образом, начинаем построение модели:

$$Y = T * S * E, \tag{1}$$

где Т — трендовая компонента, S — сезонная компонента, E — случайная компонента. Для начала методом скользящей средней производим выравнивание изначальных уровней ряда. Вторым этапом исчисляем центрированные скользящие средние. Затем делим на них фактические уровни ряда Y_t и получаем оценки сезонной компоненты. Последним шагом исчислим значения сезонных компонент, принимая во внимание, что суммарное значение за все 12 периодов обязана равняться 12 (таблица 2). В данном случае корректирующий коэффициент равен 1,0137.

Таблица № 2 Скорректированная сезонная компонента

<u>e</u>		Гол	Номер квартала											
оказате	Тод	1	2	3	4	5	6	7	8	9	10	11	12	
OK	П	2018							1,39	0,62	1,18	1,21	0,77	1,26
		2019	0,85	0,51	1,26	1,23	0,58	0,94	1,49	0,75	1,02			
	Σ	Σ	0,85	0,51	1,26	1,23	0,58	0,94	2,88	1,37	2,20	1,21	0,77	1,26
	S	ср	0,85	0,51	1,26	1,23	0,58	0,94	1,44	0,69	1,10	1,21	0,77	1,26
S_i		0,86	0,52	1,28	1,25	0,59	0,95	1,46	0,70	1,11	1,23	0,78	1,28	

Для получения десезонализированного ряда каждый уровень исходного ряда нужно разделить на соответствующее значение сезонной компоненты Графически представим десезонализированный ряд (Y/S) на рис. 2.

Рис. 2. – Поведение линейного тренда десезонализированного ряда

Регрессионный анализ показывает, что фактическое значение F-критерия Фишера данной модели (y=0,431t+69,224) равно 12 и больше $F_{\text{табл}}=3,34$. Кроме того, можно говорить о значимости t-статистики оценок параметров модели. Однако коэффициент детерминации $R^2=0,1315$ говорит о непригодности данной модели для качественного прогнозирования. Для подтверждения этой мысли целесообразно вычислить процент ошибки прогнозирования по формуле:

$$\frac{\sum (y_t - \widehat{y_t})^2}{\sum (y_t - \overline{y_t})^2} \tag{2}$$

где $\overline{y_t}$ — среднее арифметическое значение уровней ряда $y_t, \ \widehat{y_t}$ — расчетные значения линейного тренда построенной модели.

Так, расчёт доли ошибки составил 21%. Данный процент позволяет убедиться в том, что модель не может использоваться для прогноза.

Необходимо проанализировать структуру полученного ряда. На рисунке 2 наглядно видно, что наиболее сильные отклонения y_t от линейного тренда происходят, когда t=2, 4, 5, 26. Произвести сглаживание данный отклонений рекомендуется путём ввода фиктивных переменных.

Улучшение модели тренда после добавления фиктивных переменных подразумевает трудоемкий процесс, включающий постепенные многочисленные изменения модели. В конечном итоге было получено уравнение тренда с фиктивными переменными Z_2 , Z_4 , Z_5 , Z_{26} , принимающими значение 1 для рассматриваемого периода t и 0 – для остальных:

$$T = \begin{pmatrix} 69,15 + 0,371 * t - 9,427 * Z_2 \\ -13,65 * Z_4 + 13,479 * Z_5 + 13,24 * Z_{26} \end{pmatrix} * S_i$$
 (3)

С целью проверки полученной модели (3) на адекватность рассмотрим показатели регрессионной статистики и дисперсионного анализа (рис. 3).

Регрессионная ст	атистика				
Множественный R	0,909824868				
R-квадрат	0,82778129				
Нормированный R-квадрат	0,786776835				
Стандартная ошибка	4,355877828				
Наблюдения	27				
Дисперсионный анализ					
	df	SS	MS	F	Значимость F
Регрессия	5	1915,163906	383,0327812	20,18759406	2,23159E-07
Остаток	21	398,4471047	18,97367165		
Итого	26	2313,611011			
	Коэффициенты	Стандартная ошибка	t-cmamucmuka	Р-Значение	Нижние 95%
Ү-пересечение	69,15057453	2,107417769	32,81294081	1,57673E-19	64,76795936
t	0,371041207	0,128263689	2,892800066	0,008705466	0,104302264
Z2	-9,426509518	4,743947485	-2,987060259	0,040116074	-19,29208839
Z4	-13,65011886	4,661202288	-2,92845451	0,008029487	-23,34361968
Z5	34,47887485	4,624613066	7,455515599	2,50139E-07	24,8614655
Z26	13,24024903	4,674686843	2,832328555	0,009978226	3,518705553

Рис. 3. – Показатели регрессионной статистики и дисперсионного анализа

Из рис. 3 мы видим, что фактическое F-значение равно 20,18759. Кроме того R^2 = 0,82778. Обратимся к таблице распределения Фишера и увидим, что $F_{\text{табл}}$ = 3,34. Также необходимо обратиться к таблице критических значений t-критерия Стьюдента, а именно значения t-статистик для коэффициентов модели (2) необходимо сопоставить с табличным значением t при заданном уровне значимости 0,05. Таким образом, мы видим, что $t_{\text{табл}}$ = 2,06. Делаем вывод о том, что все t-статистики являются значимыми, поскольку по модулю они – больше табличного значения.

Мультипликативную модель для прогноза представим в виде формулы:

$$y = T * S, (3)$$

где T представлен формулой (2), значения S в табл. 2.

Осуществив ввод фиктивных переменных, получим:

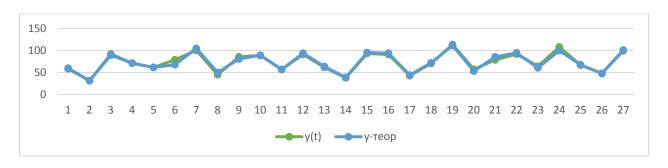


Рис. 4. – Графическое изображение практических и теоретических уровней ряда

В целях наглядной демонстрации эффективности данного метода в таблице 3 сравним первоначальные результаты регрессионной статистики до и результаты после введения фиктивных переменных.

Таблица № 3 Сравнительный анализ регрессионной статистики

Регрессионная статистика	С использованием метода	Без использования метода		
т стрессионная статистика	фиктивных переменных	фиктивных переменных		
Множественный R	0,9098	0,2002		
R-квадрат	0,8278	0,0401		
Нормированный R-квадрат	0,7868	0,0017		
F-критерий	20,19	12		
Ошибка прогноза, %	3,04	.21		

Из табл. 3 видно, что применяемая методика эффективна, так как качественно улучшает прогноз и показатели регрессионной статистики. Кроме того, была достигнута ошибка прогнозирования, равная 3,04%. Данное значение является допустимым, поскольку характер полученных данных, а так же сами результаты прогноза являются действительными, т.е. они соотносятся с реальностью.

На основе полученной модели представляется возможным сделать прогноз. Так, в апреле 2020 г., прогнозное значение объемов поступлений

федеральных налоговых сборов составило 99,53 млрд. руб., а в мае 2020 г. прогнозное значение – 46,75 млн. руб.

прогноз был совершен по данным, датирующимся чрезвычайной ситуации, связанной с пандемией COVID-19. когда Правительством был принят ряд временных экономических мер по части налогообложения. Ввиду этого, после публикации официальных данных за май апрель, ОНЖОМ будет проследить влияние непредвиденных обстоятельств на налоги и сборы и оценить, насколько их объёмы способны оказаться ниже прогнозных значений.

В заключение, онжом сделать вывод TOM, методика краткосрочного прогнозирования на основе ввода фиктивных переменных выступает эффективным методом в прогнозировании объемов федеральных налогов и сборов. В данной работе было осуществлено эконометрическое фиктивных моделирование cприменением переменных ДЛЯ учета выраженных колебаний с целью определения прогнозов поступлений федеральных налогов и сборов, что обуславливает несомненные плюсы данного метода, а именно: простоту его реализации и эффективность.

Литература

- 1. M.A. К сущности Фирсова налогового планирования И прогнозирования //Молодой ученый, 2020, № 11. URL: moluch.ru/archive/301/68096.
- Сайфутдинова Н.А. Моделирование смены технологий // Инженерный вестник Дона, 2013, № 4. URL: ivdon.ru/ru/magazine/archive/n4y2013/2138/.
- 3. Гончаренко Л.И. Налоги и налоговая система Российской Федерации. М.: Издательство Юрайт, 2020. 524 с.
- 4. Кармокова Х.Б. Модель прогноза налоговых сборов и повышения собираемости налоговых платежей // Экономический анализ: теория и

- практика, 2014, № 17. URL: cyberleninka.ru/article/n/model-prognoza-nalogovyh-sborov-i-povysheniya-sobiraemosti-nalogovyh-platezhey.
- Цвиль M.M., Великанова E.C. Прогнозирование объёмов таможенных платежей использованием фиктивных переменных // 2020. $N_{\underline{0}}$ 3. URL: Инженерный вестник Дона, ivdon.ru/ru/magazine/archive/N4y2020/6401.
- 6. Wooldridge J.M. Introductory Econometrics: A Modern Approach. South Western: Cengage Learning, 2013. 912 p.
- 7. Лукашин Ю.П. Адаптивные методы краткосрочного прогнозирования временных рядов. М.: Финансы и статистика, 2003. 416 с.
- 8. Stock J.H., Watson M.W. Introduction to Econometrics. Harvard: Harvard University, 2019. 622 p.
 - 9. Елисеева И.И. Эконометрика. М.: Издательство Юрайт, 2012. 453 с.
 - 10. Официальный сайт Федеральной налоговой службы. URL: nalog.ru.

References

- 1. Firsova M.A. Molodoy Uchenvy, 2020, № 11. URL: moluch.ru/archive/301/68096.
- 2. Saifutdinova N.A. Inzhenernyj vestnik Dona, 2013, № 4. URL: ivdon.ru/ru/magazine/archive/n4y2013/2138.
- 3. Goncharenko L.I. Nalogi I nalogovaya sistema Rossiyskoy Federacii [Taxes and tax system of the Russian Federation]. M.: Izdatelstvo Yurayt, 2020. 524 p.
- 4. Karmakova H.B. Economicheskiy analiz: theoriya i praktika, 2014, № 17. URL: cyberleninka.ru/article/n/model-prognoza-nalogovyh-sborov-i-povysheniya-sobiraemosti-nalogovyh-platezhey.
- 5. Csvil' M.M., Velikanova E.S. Inzhenernyj vestnik Dona, 2020, № 3. URL: ivdon.ru/ru/magazine/archive/N4y2020/6401.

- 6. Wooldridge J.M. Introductory Econometrics: A Modern Approach. South Western: Cengage Learning, 2013. 912 p.
- 7. Lukashin U.P. Adaptivniye metodi kratkosroshnogo prognozirovania vremennih ryadov [Adaptive methods for short-term time series forecasting]. M.: Finansi i statistika, 2003. 416 p
- 8. Stock J.H., Watson M.W. Introduction to Econometrics. Harvard: Harvard University, 2019. 622 p.
- 9. Eliseeva I.I. Ekonometrika [Econometrics]. M.: Izdatelstvo Yurayt, 2012. 453 p.
- 10. Ofitsial'nyy sayt Federalnoy nalogovoy slujbi [Official website of the The Federal Tax Service] URL: nalog.ru (accessed 01/07/20).