Зависимость морозостойкости модифицированных полимерами мелкозернистых бетонов от соотношения условно-закрытой и открытой капиллярной пористости

А.В. Долгова

Ростовский государственный университет путей сообщения, Ростов-на-Дону

Аннотация: ГОСТ 10060-2012 в качестве основного критерия морозостойкости для всех бетонов, в т.ч. мелкозернистых, установил соотношение предела прочности на сжатие основных и контрольных образцов не менее 0,9 с учетом коэффициента вариации прочности в серии. Известны многочисленные исследования, в которых выявлена зависимость морозостойкости бетона от характера его пористости, и предложены критерии морозостойкости в виде, например, соотношения открытой и условно-закрытой статье рассматривается влияние показателей пористости. В морозостойкость строительных растворов (мелкозернистых бетонов), по основному критерию ГОСТ 10060-2012, а также на морозостойкость контактной зоны по ГОСТ 31357 - одного из нормируемых показателей качества растворов и мелкозернистых бетонов, полученных из сухих строительных смесей. Целью настоящего исследования является выявление зависимости изменения пределов прочности на сжатие и изгиб, а также изменения сцепления с основанием модифицированных полимерами мелкозернистых бетонов от характера пористости. Исследована морозостойкость 36 составов, полученных с применением трех различных портландцементов и трех редиспергируемых полимерных порошков с дозировкой от 0 до 3% от массы сухой смеси. Помимо полимеров, в ряд составов введены низкомодульные включения в виде зольной микросферы или вовлеченного воздуха. Основные образцы испытаны после 75 циклов замораживанияоттаивания по ГОСТ 31357.

Ключевые слова: сухие строительные смеси, морозостойкость контактной зоны, открытая пористость, сцепление с основанием.

По ГОСТ 12730.4 для бетонов, в т.ч. мелкозернистых (МЗБ), определяют следующие показатели пористости: полный объем пор (Π_n), объем открытых капиллярных и некапиллярных пор (Π_o), объем условно закрытых пор (Π_{y_3}). Известно, что морозостойкость портландцементных бетонов зависит от множества факторов, среди которых особая роль отводится открытой пористости и соотношению условно-закрытых пор и открытых капиллярных пор [1-3]. Для портландцементных бетонов, модифицированных различными полимерными добавками, в ряде случаев прослеживается та же зависимость [4-6]. Подтверждается зависимость

морозостойкости бетонов от показателей пористости и для растворов и МЗБ, полученных из сухих строительных смесей (ССС) [7,8]. Вышесказанное относится к морозостойкости по критерию прочности на сжатие по ГОСТ 10060.

Далее представлены результаты исследования морозостойкости МЗБ, полученных из ССС с содержанием редиспергируемых полимерных порошков (РПП) от 0 до 3% и низкомодульных включений (НМВ) в виде зольных микросфер (МС) и воздухововлекающих добавок (ВВ) до 6 % по объему [9].

По данным [10-12], в качестве критерия, предопределяющего морозостойкость бетонов, может быть использовано соотношения открытой и условно-закрытой пористости, т.е. полагается, что

$$F = f(\Pi_{o}, \Pi_{ys}). \tag{1}$$

Далее в настоящей работе в качестве критерия, предопределяющего морозостойкость бетона, используется соотношение [11-13]

$$k_F = f(\frac{\Pi_{y.3.}}{0.09*\Pi_0}) \tag{2}$$

В табл. 1 приведены результаты определения показателей пористости МЗБ после 28 сут твердения в НУ.

Таблица №1 Результаты определения показателей пористости МЗБ

Вид НМВ	Дозировка РПП, %	Показатели пористости МЗБ								
		ПЦ-1+ РП-3			ПЦ-2+ РП-4			ПЦ-3+РП-5		
Br	До	Π_0 , %	Пуз, %	K_{F}	Π_0 , %	Π_{y_3} , %	K_{F}	Π_0 , %	Π_{y_3} , %	K_{F}
_	0	20	14,7	8,2	18,2	11,3	6,9	21,6	18,2	9,38
	1	17,5	20,3	12,9	17	14,7	9,6	14,2	30,3	23,7
	2	17,4	22,2	14,1	14,9	16,9	12,6	9,9	35,1	39,5
	3	18,3	23,4	14,2	19,5	27	15,4	8,5	35,9	46,2

MC	0	20	17,8	9,9	18,1	10,4	6,4	21,3	11,9	6,22
	1	19,2	26,1	15,1	15,2	29,1	21,3	12,6	33,4	29,3
	2	18,9	23,4	13,7	16,1	19	13,1	9,78	38,2	43,4
	3	14,3	27,5	21,3	19,7	25,3	14,3	8,81	39,4	49,7
BB	0	22,3	27,9	13,9	16,3	31,1	21,1	21	23,2	12,3
	1	18	27,1	16,7	19,3	30,5	17,5	14	30,6	24,3
	2	19,4	27,5	15,8	15	23,1	17,1	11	34,6	35,1
	3	15,4	26,3	19	16	17,1	11,8	9,5	35	41

На рис.1 представлена зависимость относительной прочности бетона на растяжении при изгибе после 75 циклов замораживания-оттаивания от критерия морозостойкости K_F .

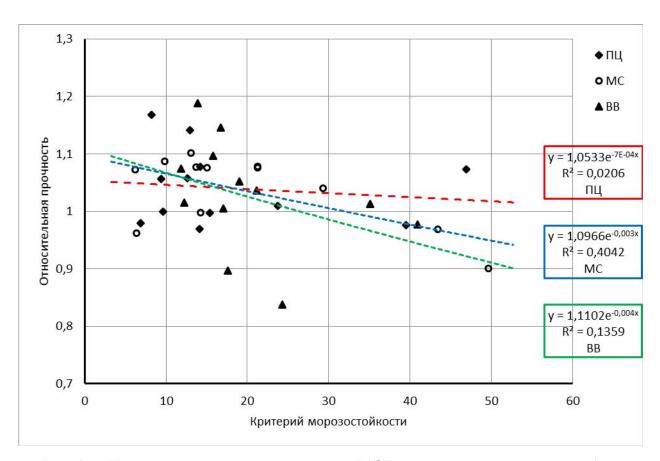


Рис.1. – Изменение предела прочности МЗБ на растяжение при изгибе в зависимости от критерия морозостойкости

По данным, представленным на рис.1, можно сделать вывод:

- несмотря на низкие значения показателя достоверности аппроксимации R^2 , отмечается определенная закономерность снижения предела прочности с ростом критерия морозостойкости, особенно в составах с МС и ВВ, причем в составах без низкомодульных включений изменение предела прочности при изгибе после циклического замораживания-оттаивания практически не зависит от критерия морозостойкости, что в принципе не логично.

На рис. 2 представлена зависимость относительной прочности бетона на сжатие от критерия морозостойкости K_F .

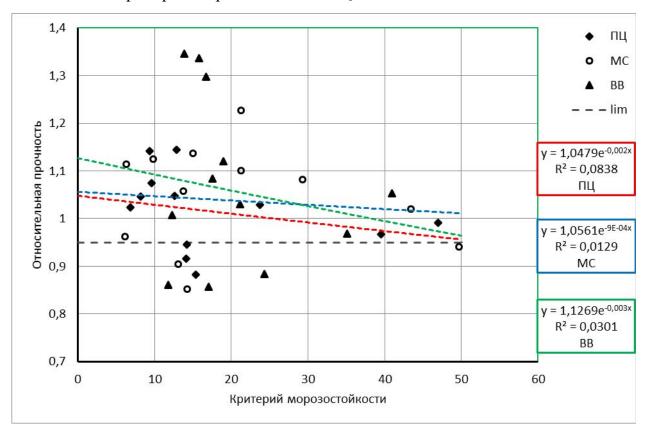


Рис. 2. – Изменение предела прочности МЗБ на сжатие в зависимости от критерия морозостойкости lim – допустимое снижение предела прочности по ГОСТ 10060

По результатам, представленным на рис. 2, можно сделать следующие выводы:

- критерий морозостойкости не оказывает значительного влияния на изменения величины относительной прочности на сжатие в составах с НМВ в виде МС;
- в составах без НМВ и составах с НМВ в виде ВВ с ростом критерия морозостойкости отмечается снижение прочности в допустимых пределах, что в принципе не логично.

На рис. 3 представлена зависимость относительного сцепления МЗБ с бетонным основанием от критерия морозостойкости K_F .

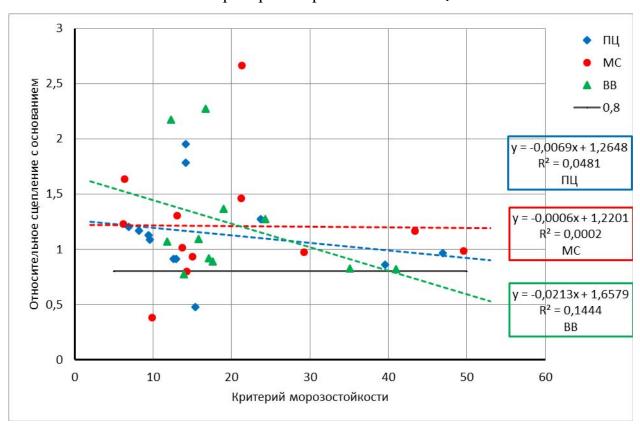


Рис. 3. — Зависимость сцепления МЗБ с бетонным основанием от критерия морозостойкости 0,8 — критерий по ГОСТ 31356

На основании представленных на рис. 3 данных можно сделать выводы:

- критерий морозостойкости практически на оказывает влияние на величину сцепления с основанием в составах с HMB в виде MC;

- в составах без НМВ и в составах с НМВ в виде ВВ наблюдается снижение сцепления с основанием при росте критерия морозостойкости, что в принципе не логично.

Таким образом, полученные результаты для МЗБ, модифицированных РПП, не выявили явной зависимости морозостойкости бетона от величины критерия морозостойкости. Возможной причиной может быть существенное изменение соотношения условно-закрытой и открытой капиллярной пористости в процессе циклического замораживания-оттаивания МЗБ, модифицированных РПП.

Выводы.

- 1. Выявлено снижения предела прочности после циклического замораживания-оттаивания с ростом критерия морозостойкости МЗБ, модифицированных РПП, особенно в составах с МС и ВВ, а в составах без низкомодульных включений изменение предела прочности при изгибе после циклического замораживания-оттаивания практически не зависит от критерия морозостойкости;
- 2. Критерий морозостойкости не оказывает значительного влияния на изменения величины относительной прочности на сжатие после циклического замораживания-оттаивания МЗБ, модифицированных РПП в составах с НМВ в виде МС, а в составах без НМВ и составах с НМВ в виде ВВ с ростом критерия морозостойкости отмечается некоторое снижение прочности;
- 3. Критерий морозостойкости практически на оказывает влияние на изменение величины сцепления с основанием после циклического замораживания-оттаивания МЗБ, модифицированных РПП в составах с НМВ в виде МС, а в составах без НМВ и в составах с НМВ в виде ВВ наблюдается снижение сцепления с основанием при росте критерия морозостойкости.

Литература

- 1. Горчаков Г. И., Капкин М.М., Скрамтаев Б.Г. Повышение морозостойкости бетона в конструкциях гидротехнических сооружений. М.: «Стройиздат», 1965. 190 с.
- 2. Шестоперов С.В. Долговечность бетона транспортных сооружений. –М.: Транспорт, 1966. 495 с.
- 3. Powers T.C. Topics in Concrete Technology. 3. Mixtures, Containing Intentionally Entrained Air. 4. Characteristics of Air Void Systems. Journal of PCA Research and Development Labs. September 1964 pp. 19-42, January 1965, pp. 23-41.
- 4. Mielenz R.S., Wolkodoff V.E., Backstrom J.E., Burrows R.W. Origin, Evolution and Effects of the Air Voids System in Job Concrete. Journal ACI, Oktober 1958. №10. pp. 507-517.
- 5. Баженов, Ю.М., Демьянова В.С., Калашников В.И. Модифицированные высококачественные бетоны. М.: ACB, 2006. 368 с.
- 6. Каприелов, С.С., Шейнфельд Г.С., Кардумян Г.С. Новые модифицированные бетоны. М.: Типография «Парадиз», 2010. 258 с.
- 7. Логанина В.И., Жегера К.В. Оценка морозостойкости плиточного клея на цементной основе с применением в рецептуре добавки на основе аморфных алюмосиликатов // Региональная архитектура и строительство. 2017. № 2 (31). С. 32-36.
- 8. Несветаев Г.В., Козлов А.В., Филонов И.А. Влияние некоторых гидрофобизирующих добавок на изменение прочности цементного камня // Инженерный вестник Дона, 2013, №2. URL: ivdon.ru/ru/magazine/archive/n2y2013/1709
- 9. Несветаев Г.В., Долгова А. В. Влияние дозировки редиспергируемых порошков на свойства мелкозернистого бетона после многократного

замораживания-оттаивания // Инженерный вестник Дона, 2019, №5. URL: ivdon.ru/ru/magazine/archive/n5y2019/5977

- 10. Кунцевич О.В. Бетоны высокой морозостойкости для сооружений Крайнего Севера. –Л.: Стройиздат, 1983. - 132 с.
- 11. Стольников В.В. О теоретических основах сопротивляемости цементного камня и бетонов чередующимися циклам замораживания и оттаивания. –Л.: Энергия, 1970. 68 с.
- 12. Шейкин, А.Е., Добшиц Л.М. Цементные бетоны высокой морозостойкости. Л.: Стройиздат, 1989. 128 с.
- 13. Несветаев Г.В., Корчагин И.В., Лопатина Ю.Ю., Халезин С.В. О морозостойкости бетонов с суперпластификаторами // Интернет-журнал «Науковедение», 2016, Том 8, №5. URL: naukovedenie.ru/PDF/88TVN516.pdf

References

- 1. Gorchakov G. I., Kapkin M.M., Skramtaev B.G. Povy'shenie morozostojkosti betona v konstrukciyax gidrotexnicheskix sooruzhenij. [Increasing the frost resistance of concrete in hydraulic structures]. M.: «Strojizdat», 1965. 190 p.
- 2. Shestoperov S.V, Dolgovechnost` betona transportny`x sooruzhenij. [Durability of concrete transport structures]. M.: Transport, 1966. 495 p.
- 3. Powers T.C. Journal of PCA Research and Development Labs. September 1964 pp. 19-42, January 1965, pp. 23-41.
- 4. Mielenz R.S., Wolkodoff V.E., Backstrom J.E., Burrows R.W. Origin, Journal ACI, Oktober 1958. №10. pp. 507-517.
- 5. Bazhenov, Yu.M., Dem`yanova V.S., Kalashnikov V.I. Modificirovanny`e vy`sokokachestvenny`e betony`. [Modified high-quality concrete]. M.: ASV, 2006. 368 p.
- 6. Kaprielov, S.S., Shejnfel'd G.S., Kardumyan G.S. Novy'e modificirovanny'e betony'. [The new modified concrete.]. M.: Tipografiya «Paradiz», 2010. 258 p.

- 7. Loganina V.I., Zhegera K.V. Regional`naya arxitektura i stroitel`stvo. 2017. № 2 (31). pp. 32-36.
- 8. Nesvetaev G.V., Kozlov A.V., Filonov I.A. Inzhenernyj vestnik Dona. 2013. №2(25) URL: ivdon.ru/ru/magazine/archive/n2y2013/1709
- 9. Nesvetaev G.V., Dolgova A. V. Inzhenernyj vestnik Dona, 2019, №5. URL: ivdon.ru/ru/magazine/archive/n5y2019/5977
- 10. Kuncevich O.V. Betony` vy`sokoj morozostojkosti dlya sooruzhenij Krajnego Severa. [Concrete of high frost resistance for constructions of the Far North]. L.: Strojizdat, 1983. 132 p.
- 11. Stol`nikov V.V. O teoreticheskix osnovax soprotivlyaemosti cementnogo kamnya i betonov chereduyushhimisya ciklam zamorazhivaniya i ottaivaniya. [About theoretical bases of resistance of cement stone and concretes to alternating cycles of freezing and thawing]. L.: E`nergiya, 1970. 68 p.
- 12. Shejkin, A.E., Dobshicz L.M. Cementny'e betony' vy'sokoj morozostojkosti. [Cement concretes of high frost resistance]. L.: Strojizdat, 1989. 128 p.
- 13. Nesvetaev G.V., Korchagin I.V., Lopatina Yu.Yu., Xalezin S.V. Internetzhurnal «Naukovedenie», 2016, Tom 8, №5. URL: naukovedenie.ru/PDF/88TVN516.pdf