Исследование энергоэффективных режимов ведения поезда с помощью имитационно-оптимизационной модели

К.И. Юренко 1,2 , П.А. Харченко 3 , Е.И. Фандеев 2

¹Ростовский государственный университет путей сообщения», Ростов-на-Дону ²Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова, г. Новочеркасск ³ОАО «РЖД», эксплуатационное локомотивное депо Лихая, Каменск-Шахтинский

Аннотация: В статье рассматривается проблема оптимального управления движением поезда (ОУДП) с позиций современной теории автоматического управления. Эта проблема многие годы является актуальной, однако к настоящему времени окончательно не решена, что связано с большим числом случайных факторов, влияющих на характер движения поезда, а также развитием в последние годы скоростного и высокоскоростного, а также тяжеловесного и длинносоставного движения. Представлены математическая модель движения поезда и постановка задачи ОУДП, предложена классификация известных методов её решения. Разработана имитационная модель в среде Matlab/Simulink, позволяющая исследовать различные модели и законы управления. Предложен метаэвристический алгоритм оптимизации режимов ведения поезда, использующий имитационную модель, реализованный в виде программного модуля на языке Matlab. Приведены результаты вычислительных экспериментов, подтверждающие сходимость алгоритма.

Ключевые слова: оптимальное управление, автоведение, математическая модель, имитационная модель, метаэвристический алгоритм.

1. Введение. Развитие цифровой экономики, являющееся в настоящее время стратегическим приоритетом нашей страны, призвано создать необходимый инфраструктурный и технологический базис экономического роста, затрагивает ключевые отрасли, транспорт, такие как образование и др. телекоммуникации, энергетика, Применительно железнодорожному транспорту ЭТО нашло отражение создании директивных документов «Стратегия научно-технологического развития холдинга «РЖД» до 2020 и на перспективу до 2025 года» («Белая книга») и комплексный «Концепция реализации научно-технического проекта «Цифровая железная дорога»», в которых одним из приоритетов является совершенствование средств автоматического вождения подвижного состава (автоведение и автомашинист), что должно способствовать повышению безопасности, надежности, энергоэффективности и комфортности пассажиров, снижению рисков, связанных с человеческим фактором.

Проблема безопасного и энергорационального ведения поездов многие годы находится в центре внимания эксплуатационных служб ОАО «РЖД», ученых и специалистов отраслевых вузов, предприятий и научно-исследовательских организаций [1-9]. За последние годы в этом направлении достигнуты определённые успехи: созданы и внедрены системы автоведения поездов, ими оснащен локомотивный парк и достигнуты высокие показатели их использования в процессе эксплуатации, что позволило улучшить условия труда локомотивных бригад, снизить число нарушений безопасности, связанных с человеческим фактором, повысить точность соблюдения графика движения и уменьшить расход топливных и энергоресурсов.

Вместе с тем, указанная проблема окончательно не решена, что связано поездной обстановки априорной неопределённостью условий функционирования, наличием случайных воздействий внешней среды, а также вариаций параметров и характеристик объекта управления. Как результаты эксплуатации, возможности показывают повышения энергоэффективности до конца не исчерпаны, что определяется показателями наиболее вождения поездов ОПЫТНЫМИ И квалифицированными машинистами. Интенсивно реализуемые в последние годы скоростное и высокоскоростное, а также тяжеловесное и длинносоставное движение требует адаптации существующих методов, моделей и технических решений к особенностям выпускаемого в настоящее время подвижного состава и условиям его эксплуатации. В связи с этим продолжение исследований указанной научной проблемы актуально.

Современные возможности вычислительной техники и инструментальных средств исследования сложных динамических систем позволяют использовать для исследования задачи оптимизации управления

движением поезда технологию имитационного моделирования, а возможности современных микропроцессорной элементной базы и САПР [10,11] — осуществить реализацию инновационного алгоритмического, программного и аппаратного обеспечения на борту подвижного состава в режиме реального времени.

2. Математическая модель движения поезда. В основе такой модели лежат базовые положения теории электрической тяги, механики и электротехники [12-14]. Уравнение движения поезда с учетом распределения массы поезда (перемещения отдельных частей поезда по различным элементам профиля пути) может быть представлена в виде:

$$\frac{dv}{ds} = \frac{\xi}{v} \left[\frac{F_s}{(m_l + \sum m_c)g} - w - w_a + \frac{l_t - s_0}{l_t} i_1 + \frac{1}{l_t} \sum_{j=2}^{m-1} s_j i_j + \frac{1}{l_t} (s_0 - \sum_{j=2}^{m-1} s_j) i_m \right],$$

где s, v, t — соответственно координата пути, скорость и текущее время; ξ — ускорение поезда при действии единичной ускоряющей силы; F_s — управляемая сила: F_s =F в режиме тяги; F_s =R в режиме рекуперативного торможения; F_s =B в режиме пневматического торможения; F_s =0 в режиме выбега; m_l и Σm_c — масса локомотива и состава; g — ускорение свободного падения; w и w_a — удельные основное и добавочное сопротивления движению; l_t — длина поезда; s_0 — расстояние от принятой за начало отсчета точки сопряжения 1 и 2-го элементов профиля до "головы" поезда; i_t — уклон j-го элемента профиля, на котором находится часть поезда (j=1,2,...); s_j — длина j-го элемента профиля пути; силы F и R — рассчитываются с помощью следующих формул:

$$v = \frac{U - Ir}{C\Phi};$$
 $F = kC\Phi I\eta_t;$ $\chi = -dF/dv;$ $R = kC\hat{O}I_r\eta_r,$

где C – коэффициент (конструкционная постоянная); k – коэффициент; Φ – магнитный поток тягового двигателя; I, I_r – ток двигателя тяги и рекуперации соответственно; η_b η_r – к.п.д. тягового электродвигателя,

 $\Delta U_c = (k_U - l) \Delta U_p$, $x_{sb}^{\ \ \ \ \ \ }$ — координата k-ой подстанции; коэффициент пропорциональности $k_U = l + 0.24 \ x_{sb}^{\ \ \ \ \ \ \ } - x_{sb}^{\ \ \ \ \ \ \ } (x_{sb}^{\ \ \ \ \ \ \ \ \ } - x_{sb}^{\ \ \ \ \ \ \ }) / \ l_m (l/L_{ev} + l/L_{od})$, здесь l_m — среднее расстояние между подстанциями; L_{ev} , L_{od} — межпоездные интервалы соответственно для четного и нечетного направлений.

Сила механического (пневматического) торможения определяется по формуле $B(P_{bc}, v) = k_k K_p(P_{bc}) \varphi_k(v)$, где k_k – количество тормозных колодок в поезде; P_{bc} – давление воздуха в тормозных цилиндрах; K_p – сила нажатия колодки на колесо, φ_k – коэффициент трения тормозной колодки, которая может быть представлена в виде зависимости [15]:

$$B(P_{tc}, v) = k_1(k_2 P_{tc} - k_3)k_4 \frac{k_5(k_6 P_{tc} - k_{10}) + k_{11}}{k_7(k_8 P_{tc} - k_9) + k_{12}} \cdot \frac{v + k_{13}}{k_{14}v + k_{15}},$$

где k_{I} - k_{I5} – числовые коэффициенты.

Силы основного сопротивления движению определяются из соотношений

$$w = \frac{w_l m_l + \sum w_c m_c}{m_l + \sum m_c}, w_l = a_1 + b_1 v + c_1 v_2, w_c = a_2 + (b_2 + c_2 v + d_2 v^2) / m_q,$$

где w_l и m_c – основное сопротивление движению соответственно локомотива и вагонов; m_q – масса, приходящаяся на одну ось; a_l , a_2 , b_l , b_2 , c_l , c_2 , d_2 – числовые коэффициенты.

Добавочное сопротивление движению: $w_a = w_k + w_g + w_t + w_w + w_0$ складывается из дополнительных сопротивлений при движении поезда в кривых пути $w_k = k_{16}/R_k$, R_k — радиус кривой, дополнительного сопротивления от подвагонных генераторов, где $w_g = k_{17}P^{'}/m_q v$ средняя условная мощность подвагонного генератора, приходящаяся на один поезд; $w_k = wk_{18}$ — дополнительное сопротивление движению при низких температурах окружающей среды; $k_{16}-k_{18}$ — числовые коэффициенты; w_w — дополнительное сопротивление от ветра: $w_w = A_g(c_0/2)/(\rho\Omega/Q_0)v^2$, где A_g — коэффициент, учитывающий скорость ветра v_w и угол между векторами скоростей ветра и поезда в случае, если $v > v_w$:

$$A_g = v_w/v(sina-2cosa) - v_w^2/v^2(sina-2cosa)cosa$$

 c_0 – коэффициент аэродинамического сопротивления; ρ – плотность воздуха; Ω и Q_0 – плотность поперечного сечения вагона и его вес; w_0 – добавочное сопротивление при трогании с места. Процессы боксования описываются следующей системой соотношений:

$$F-F_{sl}=m_l dv/dt; F_{sl}=1000 m_l g \psi_k; \ \psi_k=q_0+q_l/(\ q_2+q_3 v)-q_4 v,$$
 где F_{sl} — сила сцепления колеса и рельса; ψ_k —коэффициент сцепления; q_0 - q_4 — числовые коэффициенты.

Одним из критериев качества управления является величина максимальных продольно-динамических реакций в поезде, которая связана с безопасностью движения грузовых поездов и комфортностью пассажиров. Для их исследования решаются дифференциальные уравнения движения экипажей поезда, которые имеют следующий вид:

$$\begin{cases} m_{l}d^{2}s_{l} / dt = F - W - W_{a} - W_{i} - R - B_{l} - F_{1}; \\ m_{1}d^{2}s_{1} / dt = F_{1} - W_{1} - W_{a1} - W_{i1} - B_{1} - F_{2}; \\ m_{2}d^{2}s_{2} / dt = F_{2} - W_{2} - W_{a2} - W_{i2} - B_{2} - F_{3}; \\ \dots \\ m_{n-1}d^{2}s_{1} / dt = F_{j} - W_{n-1} - W_{an-1} - W_{in-1} - B_{n-1} - F_{j+1}; \\ m_{n}d^{2}s_{n} / dt = F_{n} - W_{n} - W_{an} - W_{in1} - B_{n}; \\ v_{l} = ds_{1} / dt; \\ v_{n} = ds_{n} / dt, \end{cases}$$

где: m_l , s_l и v_l — масса, координата и скорость локомотива; m_n , s_n — масса и координата n-го вагона; B_l и B_n — силы пневматического торможения локомотива и n-го вагона; W и W_a , W_{an} и W_{in} — силы основного и дополнительного сопротивлений локомотива и вагонов; F_i — реакция (сила) в i-м межвагонном соединении. При этом может быть использована, например, специализированная среда вычислительной механики «Универсальный механизм», позволяющая моделировать продольно-динамические реакции в поезде с заданными параметрами и режимами движения [15]. Расход электроэнергии на движение поезда составляет $A = (A_t + A_a)/(\eta_{tw} \eta_{sb})$, где A_t — расход энергии на собственные нужды; η_{tw} — средний к.п.д. тяговой сети; η_{sb} — средний к.п.д. тяговой подстанции, или

$$A = \int_{0}^{T} P dt = \int_{0}^{T} U_{p} I_{t} dt = \int_{0}^{T} (F v / \eta_{t} - R v \eta_{r}) dt,$$

где P- потребляемая локомотивом мощность; T- общее время хода.

3. Постановка и методы решения задачи оптимизации режимов ведения поезда. Задача оптимального управления движением поезда может быть сформулирована в следующем виде: для объекта, описываемого математическими соотношениями, представленными в параграфе 2, найти $F_u(u(t))$ или $F_u(u(s))$, $F_u(u) \le F_u^{\text{val}}(s,v)$, удовлетворяющие условиям (1) для грузового поезда и (2) - для пассажирского:

$$\begin{cases} A \to \min; \\ F_{\text{max}} \to \min; \\ t_{x} - t_{z} \le t_{d}; \\ x \mid_{t=0} = x_{0}; \\ x \mid_{t=t_{x}} = x_{k}; \end{cases}$$

$$\begin{cases} x \mid_{t=t_{x}} = x_{k}; \\ v \mid_{x=x_{0}} = v_{0}; \\ v \mid_{x=x_{k}} = v_{k}; \\ v \le v^{rist}(x), \end{cases}$$

$$\begin{cases} A \to \min; \\ t_{x} - t_{z} \le t_{d}; \\ x \mid_{t=0} = x_{0}; \\ x \mid_{t=t_{x}} = x_{k}; \\ v \mid_{x=x_{k}} = v_{k}; \\ v \le v^{rist}(x); \\ dv / dt \le a_{c}, \end{cases}$$

$$(2)$$

где u(t) — управление; t_x , t_z — фактическое и заданное время хода; t_d — допустимое отклонение времени хода от заданного; x_0 , x_k , v_0 , v_k — начальные и конечные условия; v^{rist} и a_c — допустимые по условиям движения и комфортности пассажиров скорость и ускорение; $F_u^{val}(s,v)$ -ограничения на управление.

Различные методы её решения исследуются, например, в [1-6, 16-27]. Их классификация, предложенная авторами, представлена на рис. 1.

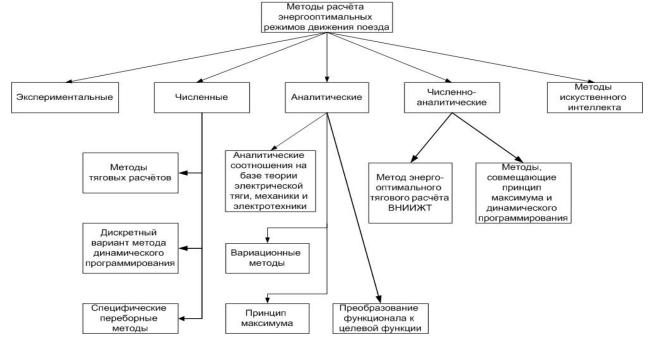


Рис. 1 – Классификация методов расчёта энергооптимальных режимов движения поезда

Наиболее глубоко развиты и доведены до практического применения аналитические методы на основе принципа максимума Л.С. Понтрягина (научная школа МГУПС) и численно-разработан оригинальный численноаналитический метод энергооптимального тягового расчёта, разработанный коллективом ученых ВНИИЖТа. В первом случае с помощью необходимых условий оптимальности предварительно определяются оптимальные режимы движения и некоторые расчётные соотношения между ними (оптимальная скорость, координата перехода на выбег, скорость начала торможения и др.) и на основе полученных соотношений в режиме реального времени реализуется циклически повторяемый упреждающий энергооптимальный тяговый расчет. Второй подход основывается на идеях последовательного приближения: на каждой итерации алгоритма строится улучшающая вариация управления, а условия оптимальности проверяются после каждой итерации с помощью оценки на основе функции Гамильтона-Понтрягина. На основе данного алгоритма разработан программный модуль, используемый в специализированном программно-аппаратном комплексе семейства систем автоведения УСАВП. Вместе с тем, анализ эксплуатации подвижного состава показывает, что существующие методы в ряде случаев (как правило, связанных со сложным профилем пути) не обеспечивают требуемое качество бригады управления локомотивные вынужденно осуществляют вмешательство в процесс ведения поезда.

4. Имитационная модель движения поезда. Для исследования алгоритмов автоведения в различных условиях эксплуатации авторами на основе изложенной выше математической модели разработана имитационная модель в среде Matlab с использованием инструментария визуального моделирования Simulink. Она позволяет произвольно задавать профиль пути и параметры подвижного состава, исследовать качество управления при различных законах u(s) (или u(t)). В основе имитационной модели лежит

функциональная схема системы автоматического управления (САУ) ведения поезда, представленная на рис. 2.

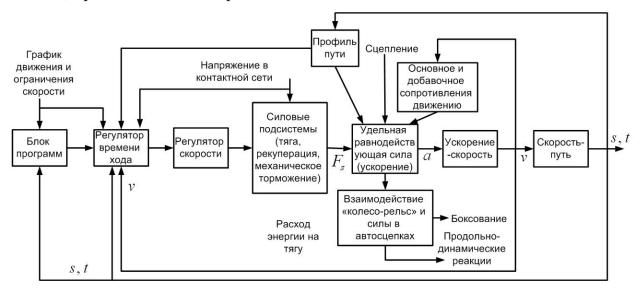


Рис. 2 - Функциональная схема САУ ведения поезда

5. Метаэвристический алгоритм оптимизации режимов ведения поезда. Для решения сформулированной в п.3 задачи оптимизации в рамках системного подхода, характерного для современной теории автоматического управления, на основе необходимых условий оптимальности в форме указанного принципа максимума выполнена редукция задачи оптимального управления (1) к специальной задаче математического программирования. разработан Для решения авторами метаэвристический использующий идеи стохастической оптимизации (в частности, мультистарт, процедуры Монте-Карло и имитации отжига), а также его программную реализацию на языке Matlab. Алгоритм использует операторы запуска m_l, m_c, n_c — набор параметров и генерации управления $u^{var} = Gen \ u(Z)$ и может быть упрощенно представлен в виде следующей последовательности шагов.

Шаг 0. Инициализация алгоритма. Задать число стартов процедуры поиска N_{start} , число итераций поиска начального приближения методом

Монте-Карло N_{mc} , начальную и конечную температуры процедуры "имитации отжига" Θ_0 и Θ_k , коэффициент снижения температуры $\alpha < 1$. Установить счетчик стартов $c_{start} = 0$.

Шаг 1. Выполнить N_{mc} итераций $(v,s,t,A) = Simulate (u=Gen_u(Z),Z)$ и найти перспективное управление $u_0^* = \operatorname{argmin}(A) \mid v = v_0$; $s = s_0$; $t_x - t_z \le t_d$.

Шаг 2. Инициализировать процедуру ИО: $\Theta = \Theta_0$; k = 0; $u^* = u_0^*$.

Шаг 3. Выполнить процедуру $(v,s,t,A) = Simulate\ (u_{k+1} = Gen\ u(Z),Z)$.

Шаг 4. Изменить перспективное решение u^* в соответствии с вероятностью:

$$P(u^* = u_{k+1}) = \begin{cases} 1, & \text{if } A(u^*) - A(u_{k+1}) < 0, \\ \exp(A(u^*) - A(u_{k+1}) / \Theta), & \text{if } A(u^*) - A(u_{k+1}) \ge 0, \end{cases}$$

Уменьшить температуру $\Theta = \Theta \cdot \alpha$;

Шаг 5. Проверить условие окончания процедуры: **если** $\Theta \leq \Theta_k$ **то** $u[q]=u^*$; перейти к шагу 5; иначе перейти к шагу 3.

Шаг 6. Проверить условия окончания расчета: **если** $q \ge N$ **то** перейти к шагу 7. Иначе увеличить счетчик стартов q = q + 1 и перейти к шагу 1.

Шаг **7.** Найти общий минимум по всем реализациям $u_{min} = argmin(A(u_i)), i=1..q.$

Как показывают вычислительные эксперименты, при правильном выборе параметров алгоритма обеспечивается хорошая его сходимость, что подтверждается данными, представленными в табл. 1.

В процессе вычислительных экспериментов, результаты которых представлены в таблице, моделировалось движение пассажирского поезда на участке длинной 30 км с затяжным спуском.

Таблица 1 Результаты вычислительных экспериментов

No	Время хода,	Расход энергии	Возврат энергии при	Суммарный
	c	на тягу, кВт·ч	рекуперации, кВт-ч	расход, кВт-ч
1	1801	504.3	457.8	46.5
2	1802	485.7	439.9	45.8
3	1807	488.1	446.0	42.1
4	1806	485.3	441.1	44.2
5	1804	489.0	446.4	42.6
6	1803	497.0	453.1	43.9
7	1807	480.0	434.0	46.0
8	1803	489.6	446.7	42.9
9	1803	472.7	428.5	44.2
10	1804	489.2	446.5	42.7

Выводы.

- 1. Эффективным методом исследования задачи оптимизации режимов ведения поезда является проведение вычислительных экспериментов с имитационной моделью. Разработанная с использованием инструментов для моделирования сложных динамических систем среды MATLAB/Simulink имитационная модель движения поезда, её математическое, алгоритмическое и программное обеспечение могут быть использованы для исследования различных законов управления движения поезда и алгоритмов оптимизации режимов автоведения.
- 2. Предложенный метаэвристический алгоритм оптимизации режимов ведения поезда, использующий идеи стохастической оптимизации (в частности, мультистарт, процедуры Монте-Карло и имитации отжига), а также его программная реализация на языке МАТLAB, имеют хорошую сходимость и позволяют решать задачу оптимизации режимов движения поезда для заданных исходных данных об участке пути (профиль пути, ограничения скорости и др.), подвижном составе (вес, длина и составность поезда) и расписании движения.

Благодарности

Работа доложена на МНК САУиОИ и опубликована при финансовой поддержке РФФИ, проект №18-07-20056 Γ .

Литература

- 1. Фаминский Г.В., Ерофеев Е.В. Автоматические устройства для вождения поездов. М.:Транспорт, 1978. 103 с.
- 2. Костромин А.М. Оптимизация управления локомотивом. М.: Транспорт, 1979. 119 с.
- 3. Баранов Л.А. Микропроцессорные системы автоведения электроподвижного состава / Л.А. Баранов [и др].; под. ред. Л.А. Баранова. М.: Транспорт, 1990. 272 с.
- 4. Климович А.В. Оптимизация управления движения поезда по минимуму затрат энергоресурсов на тягу. М.: Компания Спутник+, 2008. 263 с.
- 5. Баранов Л.А., Ерофеев Е.В., Мелёшин И.С., Чинь Л.М. Оптимизация управления движением поездов. М.:МИИТ, 2011. 164 с.
- 6. Мугинштейн Л.А., Илютович А.Е., Ябко И.А. Энергооптимальные методы управления движением поездов // Сб. научн. тр. ОАО «ВНИИЖТ». М.: Интекст, 2012. 80 с.
- 7. Юренко К.И., Юренко И.К. Системы автоведения электроподвижного состава. Принципы построения и варианты реализации // Вестник Восточноукраинского нац. ун-та им. Вл. Даля. Луганск. 2008. № 5 (123). Ч. 2. С. 68-70.
- 8. Юренко К.И. Пути совершенствования бортовых систем автоведения локомотивов // "Академические фундаментальные исследования молодых ученых России и Германии в условиях глобального мира и новой культуры

научных публикаций": Сб. матер. междунар. молодёж. конф.. Новочеркасск, 4-5 октября 2012 г. ЮРГТУ (НПИ), ЛИК. 2012. С.404-406.

- 9. Юренко К.И., Щербаков В.Г., Сапунков А.Н., Юренко И.К. Анализ тенденций развития и задачи по созданию перспективных бортовых систем управления подвижного состава железных дорог // Известия вузов. Электромеханика. № 5. 2013. С. 68-74.
- 10. Юренко К.И. Основы микропроцессорной техники: учеб. пособие // ФГБОУ ВО РГУПС. Ростов н/Д, 2017. 159 с.
- 11. Юренко К.И. Средства автоматизированного проектирования информационных технологий, элементов и устройств вычислительной техники и систем управления. Введение в САПР: учеб. пособие // ФГБОУ ВО РГУПС. Ростов н/Д, 2017. 99 с.
- 12. Осипов С.И., Осипов С.С., Феоктистов В.П. Теория электрической тяги: Учебник для вузов ж.-д. транспорта / Под ред. С.И. Осипова. М.: Маршрут, 2006. 436 с.
- 13. Слепцов М.А., Долаберидзе Г.П., Прокопович А.В. Основы электрического транспорта / Под общ. Ред. М.А. Слепцова. М.: Издательский центр «Академия», 2006. 464 с.
- 14. Теория электрической тяги / В.Е. Розенфельд, И.П. Исаев, Н.Н. Сидоров [и др.]. М.: Транспорт, 1995. 294 с.
- 15. Харченко П.А., Гребенников Н.В. Разработка компьютерной модели пассажирского поезда на основе данных современных средств регистрации параметров движения // Вестник Ростовского государственного университета путей сообщения. 2016. №2 С. 38-46.
- 16. Yurenko K.I., Fandeev E.I. Structure and functions of on-board autodriver system of train // Materials Engineering and Technologies for Production and Processing, May 19-20, 2016, IEEE Xplore (Scopus); Date Added to IEEE Xplore: 27 April 2017. 2nd International Conference on Industrial

Engineering, Applications and Manufacturing, ICIEAM 2016; South Ural State University Chelyabinsk; Russian Federation. pp. 1-6.

- 17. Yurenko K.I., Fandeev E.I. Classification systems of automatic train driving with positions of the modern automatic control theory // Proceedings of 3nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2017. Date of Conference: 16-19 May 2017; Date Added to IEEE Xplore (Scopus): 23 October; Saint Petersburg, Russia. pp. 1-5.
- 18. Юренко К.И. Принцип максимума Л.С. Понтрягина в задаче оптимального управления движением поезда. Вестник ВЭлНИИ №1-2(79)/2018. С. 147-161.
- 19. Юренко К.И. Расчёт энергооптимальных режимов движения перспективного подвижного состава методом динамического программирования // Изв. вузов. Электромеханика. 2013. №3. С.78-82.
- 20. Юренко К.И., Савоськин А.Н., Фандеев Е.И. Математическое моделирование энергооптимальных режимов ведения поезда с учетом возмущений // Изв. вузов. Северо-Кавказский регион. Технические науки. 2015. № 3. С. 34-44.
- 21. Юренко, К.И., Фандеев Е.И. Принципы построения и имитационное моделирование систем автоведения электроподвижного состава // Известия ЮФУ. Технические науки. № 08. 2016. С. 88-102.
- 22. Юренко К.И., Санунков А.Н, Фандеев Е.И. Автоматическое управление тормозами поезда на основе математического аппарата нечёткой логики в системе автоведения / Вестник Всеукраинского национального университета им. В. Даля. Техн. науки. Серия Транспорт Ч.2 №5(176). Луганск: 2012. С. 22-29.
- 23. Юренко К.И., Харченко П.А., Юренко И.К. Человеко-машинное взаимодействие в технологическом процессе ведения поезда. Вестник ВЭлНИИ № 1-2 (79) / 2018. С. 135-146.

- К.И., 24. Юренко Фандеев Е.И., Нефедов B.B. Программнокомплексы ДЛЯ технические и тренажеро-моделирующие разработки, испытаний, управления и обслуживания современных локомотивов // Инженерный 2013, **№**3 URL: Дона, вестник ivdon.ru/magazine/archive/n3y2013/1826/.
- 25. Юренко К.И., Шепилова Е.Г., Гречук И.А. Совершенствование бортовых систем управления локомотивов на базе технических средств тренажеро-моделирующих комплексов // Инженерный вестник Дона, 2014, №2 URL: ivdon.ru/ru/magazine/archive/n2y2014/2452.
- 26. Юренко К.И., Харченко П.А. Анализ модели управляющей деятельности машиниста и разработка методики оценки его профессиональных компетенций на основе нечеткой логики // Инженерный вестник Дона, 2018, №2 URL: ivdon.ru/ru/magazine/archive/N2y2018/4910.
- 27. Юренко К.И., Харченко П.А., Фандеев Е.И., Юренко И.К. Системный подход в задаче оптимизации управления движением поезда. Системный анализ, управление и обработка информации: Труды VIII Междунар. конф. (п. Дивноморское, 8–13 октября 2017 г.); Донской гос. техн. ун-т. Ростов-на-Дону: ДГТУ, 2017. Т.1. С. 30-37.

References

- 1. Faminskij G.V., Erofeev E.V. Avtomaticheskie ustrojstva dlya vozhdeniya poezdov [Automatic train driving devices]. M.:Transport, 1978. 103 p.
- 2. Kostromin A.M. Optimizaciya upravleniya lokomotivom [Locomotive control optimization]. M.: Transport, 1979. 119 p.
- 3. Baranov L.A. Mikroprocessorny'e sistemy' avtovedeniya e'lektropodvizhnogo sostava [Microprocessor systems for automatic driving of electric rolling stock]. L.A. Baranov [i dr].; pod. red. L.A. Baranova. M.: Transport, 1990. 272 p.

- 4. Klimovich A.V. Optimizaciya upravleniya dvizheniya poezda po minimumu zatrat e'nergoresursov na tyagu [Optimization of control of movement of trains at the minimum cost of energy for traction]. M.: Kompaniya Sputnik+, 2008. 263 p.
- 5. Baranov L.A., Erofeev E.V., Melyoshin I.S., Chin` L.M. Optimizaciya upravleniya dvizheniem poezdov [Optimization of train operation control]. M.:MIIT, 2011. 164 p.
- 6. Muginshtejn L.A., Ilyutovich A.E., Yabko I.A. E`nergooptimal`ny`e metody` upravleniya dvizheniem poezdov [Energy-efficient methods of train control]. Sb. nauchn. tr. OAO «VNIIZhT». M.: Intekst, 2012. 80 p.
- 7. Yurenko K.I., Yurenko I.K. Vestnik Vostochnoukrainskogo nacz. un-ta im. Vl. Dalya. Lugansk. 2008. № 5 (123). Ch. 2. pp. 68-70.
- 8. Yurenko K.I. Puti sovershenstvovaniya bortovy`x sistem avtovedeniya lokomotivov. "Akademicheskie fundamental`ny`e issledovaniya molody`x ucheny`x Rossii i Germanii v usloviyax global`nogo mira i novoj kul`tury` nauchny`x publikacij": Sb. mater. mezhdunar. molodyozh. konf.. Novocherkassk, 4-5 oktyabrya 2012 g. YuRGTU (NPI), LIK. 2012. pp.404-406.
- 9. Yurenko K.I., Shherbakov V.G., Sapunkov A.N., Yurenko I.K. Izvestiya vuzov. E`lektromexanika. № 5. 2013. pp 68-74.
- 10. Yurenko K.I. Osnovy' mikroprocessornoj texniki [The basics of microprocessor technology]: ucheb. posobie. FGBOU VO RGUPS. Rostov n/D, 2017. 159 p.
- 11. Yurenko K.I. Sredstva avtomatizirovannogo proektirovaniya informacionny`x texnologij, e`lementov i ustrojstv vy`chislitel`noj texniki i sistem upravleniya. Vvedenie v SAPR [Means of computer-aided design of information technology, elements and devices of computing equipment and control systems. Introduction to CAD]: ucheb. posobie. FGBOU VO RGUPS. Rostov n/D, 2017. 99 s.

- 12. Osipov S.I., Osipov S.S., Feoktistov V.P. Teoriya e`lektricheskoj tyagi [Electric traction theory]: Uchebnik dlya vuzov zh.-d. transporta . Pod red. S.I. Osipova. M.: Marshrut, 2006. 436 p.
- 13. Slepczov M.A., Dolaberidze G.P., Prokopovich A.V. Osnovy' e'lektricheskogo transporta [Basics of electric transport]. Pod obshh. Red. M.A. Slepczova. M.: Izdatel'skij centr «Akademiya», 2006. 464 p.
- 14. Teoriya e'lektricheskoj tyagi [Theory of electric traction]. V.E. Rozenfel'd, I.P. Isaev, N.N. Sidorov [i dr.]. M.: Transport, 1995. 294 p.
- 15. Xarchenko P.A., Grebennikov N.V. Vestnik Rostovskogo gosudarstvennogo universiteta putej soobshheniya. 2016. №2 pp. 38-46.
- 16. Yurenko K.I., Fandeev E.I. Materials Engineering and Technologies for Production and Processing, May 19-20, 2016, IEEE Xplore (Scopus); Date Added to IEEE Xplore: 27 April 2017. 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2016; South Ural State University Chelyabinsk; Russian Federation. pp. 1-6.
- 17. Yurenko K.I., Fandeev E.I. Proceedings of 3nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2017. Date of Conference: 16-19 May 2017; Date Added to IEEE Xplore (Scopus): 23 October; Saint Petersburg, Russia. pp. 1-5.
 - 18. Yurenko K.I. Vestnik VE`lNII №1-2(79) 2018. pp. 147-161.
 - 19. Yurenko K.I. Izv. vuzov. E`lektromexanika. 2013. №3. pp.78-82.
- 20. Yurenko K.I., Savos`kin A.N., Fandeev E.I. Izv. vuzov. Severo-Kavkazskij region. Texnicheskie nauki. 2015. № 3. pp. 34-44.
- 21. Yurenko, K.I., Fandeev E.I. Izvestiya YuFU. Texnicheskie nauki. № 08. 2016. pp. 88-102.
- 22. Yurenko K.I., Sanunkov A.N, Fandeev E.I. Vestnik Vseukrainskogo nacional`nogo universiteta im. V. Dalya. Texn. nauki. Seriya Transport Ch.2 №5(176). Lugansk: 2012. pp. 22-29.

- 23. Yurenko K.I., Xarchenko P.A., Yurenko I.K. Vestnik VE`lNII № 1-2 (79) 2018. pp. 135-146.
- 24. Yurenko K.I., Fandeev E.I., Nefedov V.V. Inženernyj vestnik Dona (Rus), 2013, №3 URL: ivdon.ru/magazine/archive/n3y2013/1826/.
- 25. Yurenko K.I., Shepilova E.G., Grechuk I.A. Inženernyj vestnik Dona (Rus), 2014, №2 URL: ivdon.ru/ru/magazine/archive/n2y2014/2452.
- 26. Yurenko K.I., Xarchenko P.A. Inženernyj vestnik Dona (Rus), 2018, №2 URL: ivdon.ru/ru/magazine/archive/ N2y2018/4910/.
- 27. Yurenko K.I., Xarchenko P.A., Fandeev E.I., Yurenko I.K. Sistemny'j podxod v zadache optimizacii upravleniya dvizheniem poezda. Sistemny'j analiz, upravlenie i obrabotka informacii: Trudy' VIII Mezhdunar. konf. (p. Divnomorskoe, 8–13 oktyabrya 2017); Donskoj gos. texn. un-t. Rostov-na-Donu: DGTU, 2017. V.1. pp. 30-37.